Problem: high-dimensional time series forecasting

?? what is "high-dimensional" time series forecasting?

one dimension for each individual time-series. n个time series为n维。

A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.

However, most are one-dimensional forecasting.

one-dimensional forecasting VS high-dimensional forecasting:

1. a single dimension forecast mainly depends on past values from the same dimension.

DeepGLO: a deep forecasting model which thinks globally and acts locally.

A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.

Environment: different time series can have vastly different scales without a priori normalization or rescaling.

Introduction:

需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.

Traditional methods: focus on one time-series or a small number of time-series at a time.

AR, ARIMA, exponential smoothing and so on.

?? how to share temporal patterns in the whole data-set while training and prediction?

RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.

LSTM 解决了上述问题。

Wavenet model: temporal convolutions/ causal convolutions.

Temporal convolution has been recently used, however, they still have two important shortcomings:

1. hard to train on data-sets that have wide variation in scales.

2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.

global properties. take in multiple time-series in the input layer thus capturing global properties.

PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章

  1. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  2. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  3. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  9. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. ES6 - 基础学习(8): Promise 对象

    概述 Promise是异步编程的一种解决方案,比传统的解决方案(多层嵌套回调.回调函数和事件)更强大也更合理.从语法上说,Promise是一个对象,从它可以获取异步操作的消息,Promise 还提供了 ...

  2. JS对象的概念、声明方式等及js中的继承与封装

    对象的遍历 对象可以当做数组处理,使用for in var person={}; person.name="cyy"; person.age=25; person.infos=fu ...

  3. Android中调用另一个Activity并返回结果-以模拟选择头像功能为例

    场景 Android中点击按钮启动另一个Activity以及Activity之间传值: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/detail ...

  4. JAVA架构师眼中的高并发架构,分布式架构 应用服务器集群

    前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等. 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适 ...

  5. 【DTOJ】1001:长方形周长和面积

    DTOJ 1001:长方形周长和面积  解题报告 2017.11.05 第一版  ——由翱翔的逗比w原创 题目信息: 题目描述 已知长方形的长和宽,求长方形的周长和面积? 输入 一行:空格隔开的两个整 ...

  6. Navicat Premium 12永久激活

    参考:https://baijiahao.baidu.com/s?id=1644169351506023288&wfr=spider&for=pc 百度网盘:https://pan.b ...

  7. cf912D

    题意简述:往n*m的网格中放k条鱼,一个网格最多放一条鱼,然后用一个r*r的网随机去捞鱼,问怎么怎么放鱼能使得捞鱼的期望最大,输出这个期望 题解:肯定优先往中间放,这里k不大,因此有别的简单方法,否则 ...

  8. 实验一Git代码版本管理

    GIT代码版本管理 实验目的: 1)了解分布式分布式版本控制系统的核心机理: 2) 熟练掌握git的基本指令和分支管理指令: 实验内容: 1)安装git 2)初始配置git ,git init git ...

  9. Qt获取当前屏幕大小

    1.头文件 #include<QScreen> 2.代码 QScreen *screen = QGuiApplication::primaryScreen (); QRect screen ...

  10. 初识Mybatis和一些配置和练习

    什么是Mybatis: MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射. MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集. MyBat ...