PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting
?? what is "high-dimensional" time series forecasting?
one dimension for each individual time-series. n个time series为n维。
A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.
However, most are one-dimensional forecasting.
one-dimensional forecasting VS high-dimensional forecasting:
1. a single dimension forecast mainly depends on past values from the same dimension.
DeepGLO: a deep forecasting model which thinks globally and acts locally.
A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.
Environment: different time series can have vastly different scales without a priori normalization or rescaling.
Introduction:
需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.
Traditional methods: focus on one time-series or a small number of time-series at a time.
AR, ARIMA, exponential smoothing and so on.
?? how to share temporal patterns in the whole data-set while training and prediction?
RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.
LSTM 解决了上述问题。
Wavenet model: temporal convolutions/ causal convolutions.
Temporal convolution has been recently used, however, they still have two important shortcomings:
1. hard to train on data-sets that have wide variation in scales.
2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.
global properties. take in multiple time-series in the input layer thus capturing global properties.
PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章
- A Deep Neural Network Approach To Speech Bandwidth Expansion
题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
- 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...
- 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie
Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
随机推荐
- 基于Struts2开发校园二手购物商城源码
开发环境: Windows操作系统开发工具: MyEclipse+Jdk+Tomcat+MySQL数据库 次项目分为管理员和普通用户两种角色 运行效果图 源码及原文链接:https://javadao ...
- 医院信息集成平台(ESB)实施、建设方案
医院信息集成平台(ESB)实施.建设方案 基于中立.标准.开放的IT架构和数据标准,打造插拔式医院应用生态. 解决方案 基于ESB集成总线,构建医院信息化建设顶层设计. ...
- MongoDB集群负载不均衡问题定位及解决
1.问题描述 这是一套运行在腾讯云上的MongoDB 3.6版本集群,共5个分片,每片规格是6核16GB. 在压测的过程中,发现第3个分片的CPU使用率长时间高达96%,其它4个分片的CPU使用率都没 ...
- CODEFORCES ROUND#624 DIV3
这次比赛从名字就可以看出非常水,然鹅因为第一次打codeforces不太熟悉操作只来的及做签到题(还错了一次) A,B,C都是签到题考点思维就不写了 D题 https://codeforces.ml/ ...
- clr via c# Array2
1,Array类型生成方式以及实际类型 private static void ArrayIntro() { String[] sa = new String[1]; Array a1 = Array ...
- LINUX下EFIBOOTMGR的使用,删除UEFI主板多余启动项和添加启动项
用uefi装了几次次archlinux,搞的uefi启动选项下多出来好多启动项..这东西重格硬盘也是不好用的.发现以下方法可以解决. efibootmgr //显示efi的启动项 删除一个引导项 ...
- akka设计模式系列-消息模型(续)
在之前的akka设计模式系列-消息模型中,我们介绍了akka的消息设计方案,但随着实践的深入,发现了一些问题,这里重新梳理一下设计方法,避免之前的错误.不当的观点给大家带来误解. 命令和事件 我们仍然 ...
- 关于map 的几种方式
java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类,分别是==HashMap Hashtable LinkedHashMap 和TreeMap.== Map主要用于存储 ...
- 软考复习之UML设计篇
UML统一建模语言 构件图:描述系统的物理结构,它可以用来显示程序代码如何分解成模块 部署图:描述系统中硬件和软件的物理结构,它描述构成系统架构的软件构件,处理器和设备 用例图:描述系统与外部系统及用 ...
- 图片中添加箭头【使用PPT实现】
手头上可以使用的方案 QQ截图 分辨率会改变 画图 网上的教程一般是画一根线再加一个三角来画箭头,有点麻烦,改起来不好改. PS 对我来说,软件安装本身就是个问题, 插入图片,加入箭头,组合,另存为, ...