Problem: high-dimensional time series forecasting

?? what is "high-dimensional" time series forecasting?

one dimension for each individual time-series. n个time series为n维。

A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.

However, most are one-dimensional forecasting.

one-dimensional forecasting VS high-dimensional forecasting:

1. a single dimension forecast mainly depends on past values from the same dimension.

DeepGLO: a deep forecasting model which thinks globally and acts locally.

A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.

Environment: different time series can have vastly different scales without a priori normalization or rescaling.

Introduction:

需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.

Traditional methods: focus on one time-series or a small number of time-series at a time.

AR, ARIMA, exponential smoothing and so on.

?? how to share temporal patterns in the whole data-set while training and prediction?

RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.

LSTM 解决了上述问题。

Wavenet model: temporal convolutions/ causal convolutions.

Temporal convolution has been recently used, however, they still have two important shortcomings:

1. hard to train on data-sets that have wide variation in scales.

2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.

global properties. take in multiple time-series in the input layer thus capturing global properties.

PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章

  1. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  2. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  3. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  9. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. linux 基础入门(9) 系统服务 systemctl 与 xinted的运用

    9.系统服务 9.1系统服务 可以把计算机理解为一个地点比如中关村大街系统服务理解为中关村大街的理发店.饭店.商场等等,每一个都是一个系统服务,为客户提供不同内容的服务 服务:常驻在内存中的程序,且可 ...

  2. Mac 下如何判断 WIFI 的极限传输速度还有信号强度?

    每当你加入一个无线网络后,按住Option键并点击屏幕右上角的Wi-Fi图标,就会发现除了平常的各种网络外,还出现了关于网络连接技术细节的列表. 比如说,如果想知道信号强度的信息,则需要尤其关注列表中 ...

  3. 【Android】WebDav For Android

    最近在写一个云备份功能,参考了一下市面上的软件,发现有一种采用WebDav协议的云备份成本比较低,故特地研究一下使用. 服务器提供商是使用国内的坚果云,还是非常良心的. 坚果云官网:https://w ...

  4. PHP0018:PHP 图像处理

  5. oracle分组后取最新的记录

    使用Group By来实现取最新记录,需要注意一个问题,如果最大时间相同的数据都会被取出来. PS:即使数据字段类型是timestamp,也会登录相同的时间的数据. select A.* from A ...

  6. Spring-微服务

    项目框架 功能模块介绍 Eureka:https://baike.baidu.com/item/Eureka/22402835?fr=aladdin Ribbon:https://www.jiansh ...

  7. word中模板的使用

    新建一个word文档,修改样式库中的样式,比如各章节的标题正式格式.设计好后,将文件保存为word模板. 一般自定义的模板默认保存在”C:\Users\lizhe\Documents\自定义 Offi ...

  8. 论Flaks与Django的区别

    1. jiaji2和DjangoTemplates模板引擎相比,jiaja2语法更简单 2. 耦合 3. 模型 3.1 模型定义 3.2 模型数据查询 Django: 自带ORM(Object-Rel ...

  9. Uva1660 (点联通度、边联通度问题)

    题意: 给定一个n(n<=50)的无向图,问最小删去几个点,可以使得这个图不连通 解法:   1.  基本概念 (1)一个具有 N 个顶点的图,在去掉任意 K-1 个顶点后 (1<=K&l ...

  10. centos7&python3.6uwsgi安装

    yum install python3-devel.x86_64 pip install uwsgi