PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting
?? what is "high-dimensional" time series forecasting?
one dimension for each individual time-series. n个time series为n维。
A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.
However, most are one-dimensional forecasting.
one-dimensional forecasting VS high-dimensional forecasting:
1. a single dimension forecast mainly depends on past values from the same dimension.
DeepGLO: a deep forecasting model which thinks globally and acts locally.
A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.
Environment: different time series can have vastly different scales without a priori normalization or rescaling.
Introduction:
需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.
Traditional methods: focus on one time-series or a small number of time-series at a time.
AR, ARIMA, exponential smoothing and so on.
?? how to share temporal patterns in the whole data-set while training and prediction?
RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.
LSTM 解决了上述问题。
Wavenet model: temporal convolutions/ causal convolutions.
Temporal convolution has been recently used, however, they still have two important shortcomings:
1. hard to train on data-sets that have wide variation in scales.
2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.
global properties. take in multiple time-series in the input layer thus capturing global properties.
PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章
- A Deep Neural Network Approach To Speech Bandwidth Expansion
题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
- 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...
- 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie
Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
随机推荐
- ES6 - 基础学习(8): Promise 对象
概述 Promise是异步编程的一种解决方案,比传统的解决方案(多层嵌套回调.回调函数和事件)更强大也更合理.从语法上说,Promise是一个对象,从它可以获取异步操作的消息,Promise 还提供了 ...
- JS对象的概念、声明方式等及js中的继承与封装
对象的遍历 对象可以当做数组处理,使用for in var person={}; person.name="cyy"; person.age=25; person.infos=fu ...
- Android中调用另一个Activity并返回结果-以模拟选择头像功能为例
场景 Android中点击按钮启动另一个Activity以及Activity之间传值: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/detail ...
- JAVA架构师眼中的高并发架构,分布式架构 应用服务器集群
前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等. 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适 ...
- 【DTOJ】1001:长方形周长和面积
DTOJ 1001:长方形周长和面积 解题报告 2017.11.05 第一版 ——由翱翔的逗比w原创 题目信息: 题目描述 已知长方形的长和宽,求长方形的周长和面积? 输入 一行:空格隔开的两个整 ...
- Navicat Premium 12永久激活
参考:https://baijiahao.baidu.com/s?id=1644169351506023288&wfr=spider&for=pc 百度网盘:https://pan.b ...
- cf912D
题意简述:往n*m的网格中放k条鱼,一个网格最多放一条鱼,然后用一个r*r的网随机去捞鱼,问怎么怎么放鱼能使得捞鱼的期望最大,输出这个期望 题解:肯定优先往中间放,这里k不大,因此有别的简单方法,否则 ...
- 实验一Git代码版本管理
GIT代码版本管理 实验目的: 1)了解分布式分布式版本控制系统的核心机理: 2) 熟练掌握git的基本指令和分支管理指令: 实验内容: 1)安装git 2)初始配置git ,git init git ...
- Qt获取当前屏幕大小
1.头文件 #include<QScreen> 2.代码 QScreen *screen = QGuiApplication::primaryScreen (); QRect screen ...
- 初识Mybatis和一些配置和练习
什么是Mybatis: MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射. MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集. MyBat ...