Problem: high-dimensional time series forecasting

?? what is "high-dimensional" time series forecasting?

one dimension for each individual time-series. n个time series为n维。

A need for exploiting global pattern and coupling them with local calibration校准 for better prediction.

However, most are one-dimensional forecasting.

one-dimensional forecasting VS high-dimensional forecasting:

1. a single dimension forecast mainly depends on past values from the same dimension.

DeepGLO: a deep forecasting model which thinks globally and acts locally.

A hybrid model: a global matrix factorization model regularized by a temporal convolution network + a temporal network that capture local properties of each time-series and associated covariates相关协变量.

Environment: different time series can have vastly different scales without a priori normalization or rescaling.

Introduction:

需求:比如零售商,one may be interested in the future daily demands for all items in a category. This leads to a problem of forecasting n time-series.

Traditional methods: focus on one time-series or a small number of time-series at a time.

AR, ARIMA, exponential smoothing and so on.

?? how to share temporal patterns in the whole data-set while training and prediction?

RNN - sequential modeling; and suffer from the gradient vanishing/ exploding problems.

LSTM 解决了上述问题。

Wavenet model: temporal convolutions/ causal convolutions.

Temporal convolution has been recently used, however, they still have two important shortcomings:

1. hard to train on data-sets that have wide variation in scales.

2. even though these deep models are trained on the entire data-set, during prediction the models only focus on local past data. i.e only the past data of a time-series is used for predicting the future of that time-series.

global properties. take in multiple time-series in the input layer thus capturing global properties.

PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting的更多相关文章

  1. A Deep Neural Network Approach To Speech Bandwidth Expansion

    题名:一种用于语音带宽扩展的深度神经网络方法 作者:Kehuang Li:Chin-Hui Lee 2015年出来的 摘要 本文提出了一种基于深度神经网络(DNN)的语音带宽扩展(BWE)方法.利用对 ...

  2. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  3. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

  7. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...

  8. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  9. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. Linux 简介、目录结构

    Linux是类 Unix 操作系统. 根据原生程度可分为: 内核版本 发行版本:一些公司.组织在内核版的基础上进行二次开发 根据市场需求可分为: 服务器版:没有好看的界面,在终端操作,类似于dos 桌 ...

  2. Leetcode:235. 二叉搜索树的最近公共祖先

    Leetcode:235. 二叉搜索树的最近公共祖先 Leetcode:235. 二叉搜索树的最近公共祖先 Talk is cheap . Show me the code . /** * Defin ...

  3. C#中的WinFrom技术实现串口通讯助手(附源码)

    C#中的WinFrom技术实现串口通讯助手(附源码)   实现的功能: 1.实现自动加载可用串口. 2.打开串口,并且使用C#状态栏显示串口的状态. 3.实现了串口的接收数据和发送数据功能. 4.串口 ...

  4. win下python脚本以unix风格换行保存将会报错为编码问题 SyntaxError: encoding problem:gbk

    utf-8与gbk编码都报错 从别人的github拉下来一个python脚本. 直接运行,python报错如下: File ".\drag_files_do_event.py", ...

  5. node中 package.json 文件说明

    1.概述 每个项目的根目录下面,一般都有一个package.json文件,定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据).npm install命令根据这个配置文 ...

  6. Pycharm每次新建工程都要重新安装相关库的解决办法

    之前自己每次重建工程时,都不厌其烦的重新安装了第三方的库,直接在pycharm的terminal中利用pip安装,或者鼠标放在所需库的红色波浪线上 直接点击Install Package XXX 后面 ...

  7. vim 进化 编码问题

    " 解决菜单乱码 source $VIMRUNTIME/delmenu.vim source $VIMRUNTIME/menu.vim " 防止文件显示乱码 set fileenc ...

  8. YARN安装和使用

    简介 Yet Another Resource Negotiator ,负责整个集群资源的调度,和管理,支持多框架资源统一调度(HIVE spark flink) 开启yarn 安装hadoop,可以 ...

  9. Java Web 笔记(4)

    11.Filter (重点) Filter:过滤器 ,用来过滤网站的数据: 处理中文乱码 登录验证-. Filter开发步骤: 导包 编写过滤器 导包不要错 实现Filter接口,重写对应的方法即可 ...

  10. 剑指offer-面试题38-字符串的排列-全排列

    /* 题目: 输入字符串,打印字符串的所有排列. 输入acc,输出[acc, cac, cca]. */ /* 思路: 将字符串看作两部分,第一个字符串和后面的部分. 将第一个字符串与后面字符串依次交 ...