SQLAlchemy,flask-sqlalchemy
<div class="clear"></div>
<div class="postBody">
SQLAlchemy
1.介绍
SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
pip3 install sqlalchemy
组成部分:
Engine,框架的引擎
Connection Pooling ,数据库连接池
Dialect,选择连接数据库的DB API种类
Schema/Types,架构和类型
SQL Exprression Language,SQL表达式语言
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
django中如何反向生成models
python manage.py inspectdb > app/models.py
2.简单使用(能创建表,删除表,不能修改表)
修改表:在数据库添加字段,类对应上
1执行原生sql(不常用)
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
engine = create_engine(
"mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
def task(arg):
conn = engine.raw_connection()
cursor = conn.cursor()
cursor.execute(
"select * from app01_book"
)
result = cursor.fetchall()
print(result)
cursor.close()
conn.close()
for i in range(20):
t = threading.Thread(target=task, args=(i,))
t.start()
2 orm使用
models.py
import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
Base = declarative_base()
class Users(Base):
tablename = 'users' # 数据库表名称
id = Column(Integer, primary_key=True) # id 主键
name = Column(String(32), index=True, nullable=False) # name列,索引,不可为空
# email = Column(String(32), unique=True)
#datetime.datetime.now不能加括号,加了括号,以后永远是当前时间
# ctime = Column(DateTime, default=datetime.datetime.now)
# extra = Column(Text, nullable=True)
__table_args__ = (
# UniqueConstraint('id', 'name', name='uix_id_name'), #联合唯一
# Index('ix_id_name', 'name', 'email'), #索引
)
def init_db():
"""
根据类创建数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123456@127.0.0.1:3306/aaa?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
Base.metadata.create_all(engine)
def drop_db():
"""
根据类删除数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123456@127.0.0.1:3306/aaa?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
Base.metadata.drop_all(engine)
if name == 'main':
# drop_db()
init_db()
app.py
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users
#"mysql+pymysql://root@127.0.0.1:3306/aaa"
engine = create_engine("mysql+pymysql://root:123456@127.0.0.1:3306/aaa", max_overflow=0, pool_size=5)
Connection = sessionmaker(bind=engine)
每次执行数据库操作时,都需要创建一个Connection
con = Connection()
############# 执行ORM操作
obj1 = Users(name="lqz")
con.add(obj1)
提交事务
con.commit()
关闭session,其实是将连接放回连接池
con.close()
3.一对多关系
class Hobby(Base):
__tablename__ = 'hobby'
id = Column(Integer, primary_key=True)
caption = Column(String(50), default='篮球')
class Person(Base):
tablename = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
# hobby指的是tablename而不是类名,uselist=False
hobby_id = Column(Integer, ForeignKey("hobby.id"))
# 跟数据库无关,不会新增字段,只用于快速链表操作
# 类名,backref用于反向查询
hobby=relationship('Hobby',backref='pers')</code></pre>
4.多对多关系
class Boy2Girl(Base):
__tablename__ = 'boy2girl'
id = Column(Integer, primary_key=True, autoincrement=True)
girl_id = Column(Integer, ForeignKey('girl.id'))
boy_id = Column(Integer, ForeignKey('boy.id'))
class Girl(Base):
tablename = 'girl'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
class Boy(Base):
tablename = 'boy'
id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False)
# 与生成表结构无关,仅用于查询方便,放在哪个单表中都可以
servers = relationship('Girl', secondary='boy2girl', backref='boys')
5.操作数据表
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users
engine = create_engine("mysql+pymysql://root:123456@127.0.0.1:3306/aaa", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
每次执行数据库操作时,都需要创建一个session
session = Session()
############# 执行ORM操作
obj1 = Users(name="lqz")
session.add(obj1)
提交事务
session.commit()
关闭session
session.close()
6.基于scoped_session实现线程安全
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session
from models import Users
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
"""
线程安全,基于本地线程实现每个线程用同一个session
特殊的:scoped_session中有原来方法的Session中的一下方法:
public_methods = (
'contains', 'iter', 'add', 'add_all', 'begin', 'begin_nested',
'close', 'commit', 'connection', 'delete', 'execute', 'expire',
'expire_all', 'expunge', 'expunge_all', 'flush', 'get_bind',
'is_modified', 'bulk_save_objects', 'bulk_insert_mappings',
'bulk_update_mappings',
'merge', 'query', 'refresh', 'rollback',
'scalar'
)
"""
scoped_session类并没有继承Session,但是却又它的所有方法
session = scoped_session(Session)
############# 执行ORM操作
obj1 = Users(name="alex1")
session.add(obj1)
提交事务
session.commit()
关闭session
session.close()
7.基本增删查改
import time
import threading
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from db import Users, Hosts
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
################ 添加
"""
obj1 = Users(name="wupeiqi")
session.add(obj1)
session.add_all([
Users(name="lqz"),
Users(name="egon"),
Hosts(name="c1.com"),
])
session.commit()
"""
################ 删除
"""
session.query(Users).filter(Users.id > 2).delete()
session.commit()
"""
################ 修改
"""
传字典
session.query(Users).filter(Users.id > 0).update({"name" : "lqz"})
类似于django的F查询
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
session.commit()
"""
################ 查询
"""
r1 = session.query(Users).all()
只取age列,把name重命名为xx
r2 = session.query(Users.name.label('xx'), Users.age).all()
filter传的是表达式,filter_by传的是参数
r3 = session.query(Users).filter(Users.name == "lqz").all()
r4 = session.query(Users).filter_by(name='lqz').all()
r5 = session.query(Users).filter_by(name='lqz').first()
:value 和:name 相当于占位符,用params传参数
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()
自定义查询sql
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
"""
增,删,改都要commit()
session.close()
8.常用操作
# 条件
ret = session.query(Users).filter_by(name='lqz').all()
#表达式,and条件连接
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
#注意下划线
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
#~非,除。。外
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
#二次筛选
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
#or_包裹的都是or条件,and_包裹的都是and条件
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all()
通配符,以e开头,不以e开头
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()
限制,用于分页,区间
ret = session.query(Users)[1:2]
排序,根据name降序排列(从大到小)
ret = session.query(Users).order_by(Users.name.desc()).all()
第一个条件重复后,再按第二个条件升序排
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()
分组
from sqlalchemy.sql import func
ret = session.query(Users).group_by(Users.extra).all()
分组之后取最大id,id之和,最小id
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all()
haviing筛选
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()
连表(默认用forinkey关联)
ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()
join表,默认是inner join
ret = session.query(Person).join(Favor).all()
isouter=True 外连,表示Person left join Favor,没有右连接,反过来即可
ret = session.query(Person).join(Favor, isouter=True).all()
打印原生sql
aa=session.query(Person).join(Favor, isouter=True)
print(aa)
自己指定on条件(连表条件),第二个参数,支持on多个条件,用and_,同上
ret = session.query(Person).join(Favor,Person.id==Favor.id, isouter=True).all()
组合(了解)UNION 操作符用于合并两个或多个 SELECT 语句的结果集
union和union all的区别?
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
9.执行原生sql
import time
import threading
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
查询
cursor = session.execute('select * from users')
result = cursor.fetchall()
添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'lqz'})
session.commit()
print(cursor.lastrowid)
session.close()
10.一对多
import time
import threading
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
添加
"""
session.add_all([
Hobby(caption='乒乓球'),
Hobby(caption='羽毛球'),
Person(name='张三', hobby_id=3),
Person(name='李四', hobby_id=4),
])
person = Person(name='张九', hobby=Hobby(caption='姑娘'))
session.add(person)
添加二
hb = Hobby(caption='人妖')
hb.pers = [Person(name='文飞'), Person(name='博雅')]
session.add(hb)
session.commit()
"""
使用relationship正向查询
"""
v = session.query(Person).first()
print(v.name)
print(v.hobby.caption)
"""
使用relationship反向查询
"""
v = session.query(Hobby).first()
print(v.caption)
print(v.pers)
"""
方式一,自己链表
person_list=session.query(models.Person.name,models.Hobby.caption).join(models.Hobby,isouter=True).all()
person_list=session.query(models.Person,models.Hobby).join(models.Hobby,isouter=True).all()
for row in person_list:
# print(row.name,row.caption)
print(row[0].name,row[1].caption)
方式二:通过relationship
person_list=session.query(models.Person).all()
for row in person_list:
print(row.name,row.hobby.caption)
查询喜欢姑娘的所有人
obj=session.query(models.Hobby).filter(models.Hobby.id==1).first()
persons=obj.pers
print(persons)
session.close()
11.多对多
import time
import threading
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
添加
"""
session.add_all([
Server(hostname='c1.com'),
Server(hostname='c2.com'),
Group(name='A组'),
Group(name='B组'),
])
session.commit()
s2g = Server2Group(server_id=1, group_id=1)
session.add(s2g)
session.commit()
gp = Group(name='C组')
gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
session.add(gp)
session.commit()
ser = Server(hostname='c6.com')
ser.groups = [Group(name='F组'),Group(name='G组')]
session.add(ser)
session.commit()
"""
使用relationship正向查询
"""
v = session.query(Group).first()
print(v.name)
print(v.servers)
"""
使用relationship反向查询
"""
v = session.query(Server).first()
print(v.hostname)
print(v.groups)
"""
session.close()
12.其它
import time
import threading
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text, func
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
关联子查询:correlate(Group)表示跟Group表做关联,as_scalar相当于对该sql加括号,用于放在后面当子查询
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT
group
.name AS group_name, (SELECT count(server.id) AS sid
FROM server
WHERE server.id =
group
.id) AS anon_1
FROM
group
"""
'''
select * from tb where id in [select id from xxx];
select id,
name,
#必须保证此次查询只有一个值
(select max(id) from xxx) as mid
from tb
例如,第三个字段只能有一个值
id name mid
1 lqz 1,2 不合理
2 egon 2
'''
'''
成绩表:
id sid cid score
1 1 物理 99
2 1 化学 88
3 2 物理 95
学生表:
id name 每个学生总分数
1 xx 88
2 yy 77
select id,name,
(select avr(score) from 成绩表 where 成绩表.sid=学生表.id) as x
from 学生表
subqry = session.query(func.count(成绩表.scort).label("sc")).filter(学生表.id == 成绩表.sid).correlate(学生表).as_scalar()
result = session.query(学生表.name, subqry)
'''
原生SQL
"""
查询
cursor = session.execute('select * from users')
result = cursor.fetchall()
添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)
"""
session.close()
13.Flask-SQLAlchemy
flask和SQLAchemy的管理者,通过他把他们做连接
db = SQLAlchemy()
- 包含配置
- 包含ORM基类
- 包含create_all
- engine
- 创建连接
离线脚本,创建表
详见代码
flask-migrate
python3 manage.py db init 初始化:只执行一次
python3 manage.py db migrate 等同于 makemigartions
python3 manage.py db upgrade 等同于migrate
</div>
SQLAlchemy,flask-sqlalchemy的更多相关文章
- flask SQLAlchemy中一对多的关系实现
SQLAlchemy是Python中比较优秀的orm框架,在SQLAlchemy中定义了多种数据库表的对应关系, 其中一对多是一种比较常见的关系.利用flask sqlalchemy实现一对多的关系如 ...
- python3 + flask + sqlalchemy +orm(3):多对多关系
一篇文章有多个tag,一个tag也可以属于多篇文章,文章和tag存在多对多关系 config.py DEBUG = True #dialect+driver://root:1q2w3e4r5t@127 ...
- python3 + flask + sqlalchemy +orm(2):数据库中添加表
往数据库中添加一张保存文章的表,表明为article,字段有id,title,content 同样一个配置文件:config.py DEBUG = True #dialect+driver://roo ...
- python 全栈开发,Day142(flask标准目录结构, flask使用SQLAlchemy,flask离线脚本,flask多app应用,flask-script,flask-migrate,pipreqs)
昨日内容回顾 1. 简述flask上下文管理 - threading.local - 偏函数 - 栈 2. 原生SQL和ORM有什么优缺点? 开发效率: ORM > 原生SQL 执行效率: 原生 ...
- flask, SQLAlchemy, sqlite3 实现 RESTful API 的 todo list, 同时支持form操作
flask, SQLAlchemy, sqlite3 实现 RESTful API, 同时支持form操作. 前端与后台的交互都采用json数据格式,原生javascript实现的ajax.其技术要点 ...
- Flask SQLAlchemy & model
Flask-SQLAlchemy Flask-SQLAlchemy库让flask更方便的使用SQLALchemy,是一个强大的关系形数据库框架,既可以使用orm方式操作数据库,也可以使用原始的SQL命 ...
- flask建表遇到的错误: flask,sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1071, 'Specified key was too long; max key length is 767 bytes')
error:flask,sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1071, 'Specifie ...
- Flask – SQLAlchemy成员增加
目录 简介 结构 展示 技术 运行 代码 创建数据库表单 views视图 home主页 添加成员addnew.html 展示页show_all 简介 结构 $ tree -I "__pyca ...
- Python Flask SQLALchemy基础知识
一.介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并 ...
- Flask+SQLAlchemy+alembic+Flask-RESTful使用
前言 其实准备把这篇删掉,先写Flask-restful相关的,后来想想大体框架还是先写出来,这两天踩了很多坑,有的谷歌也没有答案.一直摸索也总算是开始了. 正文 SQLAlchemy/alembic ...
随机推荐
- FIB表与RIB表的区别与联系
RIB (route information base) 和 FIB (forwarding information base),又称Ip路由表 和 CEF表,它们之间的关系可以用下面这张图片来高度概 ...
- 【python基础语法】第5天作业练习题
import random """ 1.一家商场在降价促销.如果购买金额50-100元(包含50元和100元)之间,会给10%的折扣(打九折), 如果购买金额大于100元 ...
- VMware与Centos系统安装之重置root密码
VMware与Centos系统安装之重置root密码 今日任务 1.Linux发行版的选择 2.vmware创建一个虚拟机(centos) 3.安装配置centos7 4.xshell配置连接虚拟 ...
- Python3中的支持向量机SVM的使用(有实例)
https://www.cnblogs.com/luyaoblog/p/6775342.html 首先,我们需要安装scikit-learn 一.导入sklearn算法包 在python中导入sci ...
- Mybatis和Hibernate面试问题及答案
1.@Qualifier 注解 答:当有多个相同类型的bean却只有一个需要自动装配时,将@Qualifier 注解和@Autowire 注解结合使用以消除这种混淆,指定需要装配的确切的bean. ...
- 什么是json? 什么是xml?JSON与XML的区别比较
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.它是基于 JavaScript Prog ...
- 手动安装 saltshaker-plus 版本选择特别说明(后期重点讲解Docker安装方式)
前后端都建议使用1.12版本
- Tomcat配置绝对路径
JSP访问项目工程下的地址 <video width="640" height="264" controls src="http://local ...
- c#获取所有枚举
获取所有的枚举 1.将所有的枚举单独成一个项目 2.通Assembly加载程序集 3.通过Assembly对象的GetTypes获取所有的枚举类型 4.通过Enum.GetValues可以得到枚举的所 ...
- python爬虫----爬取阿里数据银行websocket接口
业务需求:爬取阿里品牌数据银行的自定义模块==>>>人群透视==>>>查看报告==>>数据 发现:数据通过websocket接口传递,此类型接口的详细理 ...