(画师当然是武内崇啦)

Description

N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.

Input

第一行给出N,M表示布丁的个数和好友的操作次数. 第二行N个数A1,A2…An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y. 若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0

Output

针对第二类操作即询问,依次输出当前有多少段颜色.

Sample Input

4 3

1 2 2 1

2

1 2 1

2

Sample Output

3

1

最近在复习数据结构,本来打算找一道平衡树的题来做,在黄学长的博客里看到这道题。结果发现和平衡树其实没有关系。。。

看到这个题的第一想法是暴力:每次o(n)修改或查询

然而o(n^2)肯定会爆(虽然题目不给范围神坑)。我们希望能够通过某些手段来降log。首先是想到线段树,因为线段树可以解决区间内连续色段,但是我们发现这道题是针对整个序列而言,且修改无法用线段树优化。

那怎么办呢?我们发现这道题是将所有颜色为x的改为y,总共有效的修改数量是初始时的颜色种数(最多n)。其实这相当于将颜色x与颜色y合并,且之后不会再拆开。所以说这就是合并的问题啦~(废话了这么久。。)

但是该如何合并呢?我们将同一种颜色的布丁用链表连起来,合并的时候是o(1)的。但是对于合并时ans的更新是o(n)的(对于每一个都判断修改后是否与左右连接)。总的来说,就是每次合并时的复杂度“被修改的颜色的布丁个数”。

这个是可以优化的,就是用启发式合并(把小的往大的合并)。这样就是o(nlogn)的了。证明就搬一下黄学长的;

1:每次O(N)

2:每次合并后,队列长度一定大于等于原来短的长度的两倍。

这样相当于每次合并都会让短的长度扩大一倍以上,

最多扩大logN次,所以总复杂度O(NlogN),每次O(logN)。

但是由于为了启发式合并,我们改变了合并方向。需要用一个f[i]数组来存 调用i颜色时真正用到的颜色。

下面谈谈链表:

我以前一直都不清楚链表到底是个什么货。现在好像是明白了:

有两种链表:

1、对于每个点,有一个pre(前继)和nxt(后继)。这相当于双向链表

2、记录一个链表的开头head,对每个点记录一个nxt(下一个)。这相当于是单向链表

这道题需要访问链表的全部元素,所以用第二种链表。

(其实之前接触过这链表很多次,但一直不知道这就是链表)

放代码啦:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=1000000+5; int n,m,c[N],siz[N],f[N],ans=0;
int head[N],nxt[N],st[N]; void solve(int a,int b){
for(int i=head[a];i;i=nxt[i]){
if(c[i+1]==b) ans--;
if(c[i-1]==b) ans--;
}
for(int i=head[a];i;i=nxt[i]) c[i]=b;
/*这是两种不同的合并方式*/
// nxt[st[a]]=head[b];head[b]=head[a];
nxt[st[b]]=head[a];
// head[a]=0,st[a]=0;
st[b]=st[a];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&c[i]);
siz[c[i]]++,f[c[i]]=c[i];
if(c[i]!=c[i-1]) ans++;
if(!head[c[i]]) st[c[i]]=i;
nxt[i]=head[c[i]],head[c[i]]=i;
}
int opt,x,y;
while(m--){
scanf("%d",&opt);
if(opt==2) printf("%d\n",ans);
else{
scanf("%d%d",&x,&y);
if(x==y) continue;//
if(siz[f[x]]==0) continue;
if(siz[f[x]]>siz[f[y]]) swap(f[x],f[y]);
if(siz[f[x]]==0) continue;
siz[f[x]]+=siz[f[y]],siz[f[x]]=0;//+=
solve(f[x],f[y]);
}
}
return 0;
}

【bzoj1486】【[HNOI2009]梦幻布丁】启发式链表合并(详解)的更多相关文章

  1. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  2. bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1818  Solved: 761[Submit][Status ...

  3. BZOJ 1483:[HNOI2009]梦幻布丁(链表+启发式合并)

    [HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一 ...

  4. bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...

  5. BZOJ1483 [HNOI2009]梦幻布丁 【链表 + 启发式合并】

    题目 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入格式 第一行给出N,M表示 ...

  6. BZOJ 1483:[HNOI2009]梦幻布丁(链表启发式合并)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1483 题意:中文. 思路:对于每一种颜色,用一个链表串起来,一开始保存一个答案,后面颜色替换的时候再 ...

  7. [HNOI2009]梦幻布丁(链表+启发式合并)

    洛谷传送门 开始一个O(n^2)思路,每次每句要改变颜色的点,改变完颜色后重新计算颜色的段数,显然拉闸. 然后呢..然后就不会了. 看了别人博客,才知道有个叫做启发式合并的东西,就是把小的合并到大的上 ...

  8. 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)

    题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...

  9. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  10. 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并

    [BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

随机推荐

  1. 安卓中使用iconfont

    https://www.cnblogs.com/dongweiq/p/5730212.html

  2. 转:mybatis 高级结果映射(http://blog.csdn.net/ilovejava_2010/article/details/8180521)

    高级结果映射 MyBatis的创建基于这样一个思想:数据库并不是您想怎样就怎样的.虽然我们希望所有的数据库遵守第三范式或BCNF(修正的第三范式),但它们不是.如果有一个数据库能够完美映射到所有应用程 ...

  3. spring和Quartz的定时功能

    一:前沿 最近在做一个定时的功能,就是在一定时间内查询订单,然后告诉用户未付款,已付款等消息通知,而且要做集群的功能,这个集群的功能是指,我部署两套代码,其中一个定时的功能在运行,另外一个就不要运行. ...

  4. Java输入输出流备忘

    重要博客: http://blog.csdn.net/hguisu/article/details/7418161 File dir = new File("\\root");   ...

  5. mybatis基本流程、jdbc连接、ps:附mybatis(乐观锁)实现

    一.前言 Mybatis和Hibernate一样,是一个优秀的持久层框架.已经说过很多次了,原生的jdbc操作存在大量的重复性代码(如注册驱动,创建连接,创建statement,结果集检测等).框架的 ...

  6. 【BZOJ4774】修路 [斯坦纳树]

    修路 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 5 5 2 ...

  7. 在Xcode5下实现4.5,4.6的效果

      https://www.evernote.com/shard/s227/sh/a575caee-d6a8-4f43-9037-145b9a6913ca/c9a2befa22ce7c3f547f58 ...

  8. 矩阵快速幂&T1

    T1 知识储备 在写这一题之前,我们首先要了解矩阵乘法(我就是因为不懂弄了好久...) 矩阵的运算()-----(信息学奥赛一本通之提高篇) 矩阵的加法减法是十分简单的,就是把2个矩阵上对应的位置相加 ...

  9. [bzoj3669][Noi2014]魔法森林——lct

    Brief description 给定一个无向图,求从1到n的一条路径使得这条路径上最大的a和b最小. Algorithm Design 以下内容选自某HN神犇的blog 双瓶颈的最小生成树的感觉, ...

  10. python判断操作系统

    https://www.crifan.com/python_get_current_system_os_type_and_version_info/ 参考:https://stackoverflow. ...