Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For parents, it is still always looks like “he again found a stick and peels the trees.” They cannot understand that it is a sword. Or epee. Or katana.
Today Peter has found a shield. Actually, it is a board from the fence; fortunately, the nails from it have already been pulled. Peter knows that the family coat of arms should be depicted on the knight’s shield. The coat of arms of Ivanovs is a rectangle inscribed in a triangle (only grandfather supports Peter’s game, and he is, after all, a professor of mathematics). Peter has already drawn the triangle, and then noticed that there is a hole from a nail inside the triangle. It is not very good, so Peter wants to draw a rectangle in such a way that the hole will be on its border.
Because of the rectangle in Peter’s family symbolizes the authority and power then Peter wants to draw a rectangle of maximum area.
And due to the fact, that Peter is a grandson of grandfather-mathematician, he is also interested in purely theoretical question — how many different rectangles, satisfying the conditions, can be drawn in the triangle.
Help Peter to find the answers to these questions.

Input

The four lines contain the coordinates of four points that are the vertices of the triangle and the hole, respectively. All coordinates are integers and do not exceed 10 4 in absolute value. It is guaranteed that the hole is strictly inside the triangle. Also it is guaranteed that the triangle vertices do not lie on one line.

Output

In the first line output the maximum area of a rectangle, which Peter can draw. The answer will be considered correct if a relative or absolute error of maximum area does not exceed 10 −6.
In the second line output the number of different rectangles that Peter can draw (these rectangles are not required to have the maximum area).

Example

input output
0 0
10 0
0 20
4 6
48.0000000000
4
-3 0
2 -1
5 7
0 1
9.0697674419
2

Notes

The rectangle is called inscribed in a triangle if all its vertices lie on the sides of the triangle.

把三角形按锐角、直角、钝角分类讨论,看点p是否在三条高上。锐角三角形的答案在3-6之间,直角在3-4之间,钝角在1-2之间。

需要求点在直线上的射影,然后再相似三角形啦,正切函数啥的啦搞一下面积就出来了。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define EPS 0.00000001
struct Point
{
double x,y;
Point(const double &X,const double &Y)
{
x=X;
y=Y;
}
Point(){}
double Length()
{
return sqrt(x*x+y*y);
}
}p,a[4];
typedef Point Vector;
double Dot(const Vector &a,const Vector &b)
{
return a.x*b.x+a.y*b.y;
}
Vector operator - (const Vector &a,const Vector &b)
{
return Vector(a.x-b.x,a.y-b.y);
}
Vector operator + (const Vector &a,const Vector &b)
{
return Vector(a.x+b.x,a.y+b.y);
}
double Cross(const Vector &a,const Vector &b)
{
return a.x*b.y-a.y*b.x;
}
double DisToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/v1.Length();
}
double tanget(Point a,Point b,Point c)//a是顶点
{
double COS=Dot(b-a,c-a)/(b-a).Length()/(c-a).Length();
double SIN=sqrt((1.0-COS*COS));
return SIN/COS;
}
Vector operator * (const double &x,const Vector &v)
{
return Vector(x*v.x,x*v.y);
}
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+(Dot(v,P-A)/Dot(v,v))*v;
}
double area;
int main()
{
//freopen("b.in","r",stdin);
for(int i=1;i<=3;++i)
scanf("%lf%lf",&a[i].x,&a[i].y);
scanf("%lf%lf",&p.x,&p.y);
int flag=0,ans=0;
//钝角三角形
if(Dot(a[2]-a[1],a[3]-a[1])<-EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[2],a[3]-a[2])<-EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[3],a[2]-a[3])<-EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//直角三角形
if(fabs(Dot(a[2]-a[1],a[3]-a[1]))<EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[1],a[3]);
double h2=(p3-a[3]).Length()/(a[1]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[1]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[2]).Length()/(a[1]-a[2]).Length()*(a[1]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[2],a[1],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[2],a[3]-a[2]))<EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[3]).Length()/(a[2]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[2]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[3],a[2]-a[3]))<EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[2]).Length()/(a[2]-a[3]).Length()*(a[1]-a[3]).Length();
Point p4=GetLineProjection(p,a[1],a[3]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[2],a[1],a[3]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[3]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[3]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//锐角三角形
for(int i=1;i<=3;++i)//枚举上顶点
{
int j,k;
if(i==1) j=2,k=3;
else if(i==2) j=3,k=1;
else j=1,k=2;
double dis=DisToLine(p,a[j],a[k]);
area=max(area,dis*((a[j]-a[k]).Length()-dis/tanget(a[j],a[i],a[k])-dis/tanget(a[k],a[i],a[j])));
if(fabs(Dot(a[i]-p,a[k]-a[j]))<EPS)
++ans;
else
{
ans+=2;
Point p1=GetLineProjection(a[i],a[j],a[k]);
Point p2=GetLineProjection(p,a[j],a[k]);
double h=(a[i]-p1).Length();
double h1;
if(Dot(p-p1,a[j]-p1)>EPS)
h1=(p2-a[j]).Length()/(p1-a[j]).Length()*h;
else
h1=(p2-a[k]).Length()/(p1-a[k]).Length()*h;
double l1=(h-h1)/h*(a[j]-a[k]).Length();
area=max(area,h1*l1);
}
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}

【计算几何】URAL - 2101 - Knight's Shield的更多相关文章

  1. Ural 1298 Knight 题解

    目录 Ural 1298 Knight 题解 题意 题解 程序 Ural 1298 Knight 题解 题意 给定一个\(n\times n(1\le n\le8)\)的国际象棋棋盘和一个骑士(基本上 ...

  2. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  3. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  4. Ural 1197 - Lonesome Knight

    The statement of this problem is very simple: you are to determine how many squares of the chessboar ...

  5. Ural 2036. Intersect Until You're Sick of It 计算几何

    2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...

  6. URAL 1775 B - Space Bowling 计算几何

    B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...

  7. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  8. URAL 2099 Space Invader题解 (计算几何)

    啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...

  9. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

随机推荐

  1. HDU 5666 快速乘

    Segment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  2. babel-preset-es2015,babel-polyfill 与 babel-plugin-transform-runtime

    babel-preset-es2015 是一个babel的插件,用于将部分ES6 语法转换为ES5 语法.转换的语法包括: 箭头函数 var a1 = () => 1 编译为 var a1 = ...

  3. 九大排序算法Java实现

    之前学习数据结构与算法时花了三天时间整理九大排序算法,并采用Java语言来实现,今天第一次写博客,刚好可以把这些东西从总结的文档中拿出来与大家分享一下,同时作为自己以后的备忘录. 1.排序算法时间复杂 ...

  4. Spring - IoC(1): Spring 容器

    BeanFactory & ApplicationContext org.springframework.beans.factory.BeanFactory 是最基本的 Spring 容器接口 ...

  5. 【NOI2014】起床困难综合症 位运算+贪心

    这道题先求出0和-1经过处理后的答案 具体看代码吧 #include<cstdio> #include<cstring> #include<algorithm> u ...

  6. 【STSRM12】夏令营

    [题意]n个数划分成k段,每段的价值为段内不同数字的数量,求最大总价值 [算法]DP+线段树 [题解] f[i][j]表示前i个数字划分成j段的最大价值. f[i][j]=max(f[k][j-1]+ ...

  7. C# MVC 页面面包屑以及相应的权限验证操作

    一.特性类 /// <summary> /// 访问权限控制属性. /// </summary> [AttributeUsage(AttributeTargets.Method ...

  8. js三层引号嵌套

    ··· 参考:https://blog.csdn.net/feiyangbaxia/article/details/49681131 第一层用双引号,第二层转义双引号,第三层单引号

  9. java对象内存大小评估

    Java对象的内存布局:对象头(Header).实例数据(Instance Data)和对齐填充(Padding).无论是32位还是64位的HotSpot,使用的都是8字节对齐.也就是说每个java对 ...

  10. TCP三次握手四次分手

    TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...