题意

给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改。一个点被更改当它的颜色与之前相反。

题解

第一道Gauss消元题。所谓gauss消元,就是使用初等行列式变换把原矩阵转化为上三角矩阵然后回套求解。

给定一个矩阵以后,我们考察每一个变量,找到它的系数最大的一行,然后根据这一行去消除其他的行。具体地代码如下面所示。

double a[N][N]
void Gauss(){
for(int i=1;i<=n;i++){
int r=i;
for(int j=i+1;j<=n;j++)
if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int j=1;j<=n+1;j++) swap(a[i][j],a[r][j]); for(int j=i+1;j<=n;j++){
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*t;
}
}
for(int i=n;i>=1;i--){
for(int j=n;j>i;j--) a[i][n+1]-=a[j][n+1]*a[i][j];
a[i][n+1]/=a[i][i];
}
}

对于xor运算,我们可以使用同样的方法消元。

另外,xor的话可以使用bitset压位以加速求解。

代码(附有详细注释)

#include <algorithm>
#include <cstdio>
const int maxn = 45;
int a[maxn][maxn], b[maxn];
int n, m, tot, mn = 0x3f3f3f;
void gauss() {
for (int i = 1; i <= n; i++) { //依次考察每一个未知数
int j = i; //开始选中第i行
while (j <= n && !a[j][i]) //选中系数最大的一行(减小精度误差)
j++;
if (j > n)
continue;
if (i != j)
for (int k = 1; k <= n + 1; k++) //交换两行,使得第i行成为最大系数
std::swap(a[j][k], a[i][k]);
for (int j = 1; j <= n;
j++) // gauss消元核心代码:使用第i行消除所有行的第i个未知数
if (i != j && a[j][i]) //以此来形成一个上三角矩阵,为之后的消元作准备
for (int k = 1; k <= n + 1; k++)
a[j][k] ^=
a[i][k]; //如果是普通的线性方程组,这里需要使用别的方法把系数置零
}
}
void dfs(int now) { //由于gauss消元后有一些自由元,我们需要进行最优解暴力搜索
if (tot >= mn)
return;
if (!now) {
mn = std::min(mn, tot);
return;
}
if (a[now][now]) { //确定的情况
int t = a[now][n + 1];
for (int i = now + 1; i <= n; i++)
if (a[now][i])
t ^= b[i]; //由于是上三角矩阵,所以逆向消元
b[now] = t;
if (t)
tot++;
dfs(now - 1);
if (t)
tot--; //回溯
} else { //自由元的情况,随意确定
b[now] = 0;
dfs(now - 1);
b[now] = 1;
tot++;
dfs(now - 1);
tot--;
}
}
int main() {
#ifdef D
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
a[i][i] = 1, a[i][n + 1] = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d %d", &x, &y);
a[x][y] = a[y][x] = 1;
}
gauss(); //判定是否无解:系数矩阵全0,常数矩阵不全为0
dfs(n);
printf("%d\n", mn);
return 0;
}

附:如何使用bitset

首先,声明bitset:

#include <bitset>
using std::bitset;

初始化:

bitset<n> b;
bitset<n> b(unsigned long u);

上述语句声明了一个n位全部为0的bitset,第二个语句用一个unsigned long long变量去初始化bitset。

bitset的更多操作:

b1 = b2 & b3;//按位与
b1 = b2 | b3;//按位或
b1 = b2 ^ b3;//按位异或
b1 = ~b2;//按位补
b1 = b2 << 3;//移位

[bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法的更多相关文章

  1. bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)

    1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1153  Solved: 564[Submi ...

  2. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  3. BZOJ1770 : [Usaco2009 Nov]lights 燈

    设$f[i]$表示$i$点按下开关后会影响到的点的集合,用二进制表示. 不妨设$n$为偶数,令$m=\frac{n}{2}$,对于前一半暴力$2^m$搜索所有方案,用map维护每种集合的最小代价. 对 ...

  4. 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树

    经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...

  5. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  6. 【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  7. BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]

    题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...

  8. 【BZOJ 1770 】 [Usaco2009 Nov]lights 燈 dfs+异或方程组

    这道题明显是异或方程组,然而解不一定唯一他要的是众多解中解为1的数的最小值,这个时候我们就需要dfs了我们dfs的时候就是枚举其有不确定解的数上选0或1从而推知其他解,由于我们dfs的时候先0后1,虽 ...

  9. 【BZOJ】1770 [Usaco2009 Nov]lights 燈

    [算法]高斯消元-异或方程组 [题解]良心简中题意 首先开关顺序没有意义. 然后就是每个点选或不选使得最后得到全部灯开启. 也就是我们需要一种确定的方案,这种方案使每盏灯都是开启的. 异或中1可以完美 ...

随机推荐

  1. JavaScript序列化对象成URL格式

    http://access911.net/fixhtm/72FABF1E15DCEAF3.htm?tt=

  2. Fiddler安卓抓包详细教程

    电脑端抓包一般图方便就用浏览器自带的,最近需要分析安卓一个APP的HTTP请求,尝试了wireshark(功能太强大了,然而我并不会用),tcpdump(用起来还是比较麻烦),网上搜了一下,还是使用F ...

  3. 「日常训练」「小专题·USACO」 Ski Course Design (1-4)

    题目 以后补 分析 mmp这题把我写蠢哭了 我原来的思路是什么呢? 每轮找min/max,然后两个决策:升min/降max 像这样子dfs找最优,然后花式剪枝 但是一想不对啊,这才1-4,哪有那么复杂 ...

  4. Prim求MST最小生成树

    最小生成树即在一个图中用最小权值的边将所有点连接起来.prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似 prim算法思想:在图中随便找一个点开始这里我们假定起点为“1”,以点1 ...

  5. iOS-Hello World

    尝试练习一些简单的app,能快速上手开发环境和开发流程.基础Start Developing iOS Apps (Swift)https://developer.apple.com/library/c ...

  6. 目标检测之Faster-RCNN的pytorch代码详解(模型准备篇)

    十月一的假期转眼就结束了,这个假期带女朋友到处玩了玩,虽然经济仿佛要陷入危机,不过没关系,要是吃不上饭就看书,吃精神粮食也不错,哈哈!开个玩笑,是要收收心好好干活了,继续写Faster-RCNN的代码 ...

  7. pexpect获取远端命令执行结果

    类比于shell的expect, python中使用pexpect模块来模拟用户和终端交互.有的时候使用pexpect.sendline发送命令后,在各种条件影响下, 可能并不能保证命令在远端服务器执 ...

  8. K-Means和FCM聚类

    K均值聚类是基于原型的.划分的聚类方法.聚类数K由用户指定,初始的K个聚类中心随机选取,然后将每个点分派到最近的聚类中心,形成K个簇,接下来重新计算每个簇的聚类中心,重复上一步,直到簇不发生变化或达到 ...

  9. 官方文档:11G新特性SQL PLAN BASLINE 执行计划基线

    什么是SQL执行计划管理? SQL计划管理(SQL plan management)是一咱预防机制,记录和评估SQL语句的执行计划.SQL plan management的主要功能是sql plan ...

  10. winform 控件大小随着窗体自适应

    3个方法: #region 控件缩放变量        double formWidth;//窗体原始宽度        double formHeight;//窗体原始高度        doubl ...