关于缺失值(missing value)的处理

在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。

首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。

使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:

1
2
3
4
5
6
7
8
>>> type(np.NaN)
<type 'float'>
>>> type(np.nan)
<type 'float'>
>>> np.NaN
nan
>>> np.nan
nan

因此,如果要进行处理的数据集中包含缺失值一般步骤如下:

1、使用字符串'nan'来代替数据集中的缺失值;

2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;

3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。

代码如下:

1
2
3
4
5
6
7
8
9
10
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])
>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> imp.transform(Y)
array([[ 4.        2.        ],
       [ 6.        3.66666667],
       [ 7.        6.        ]])

上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。

当然也可以使用imp对象来对X数组本身进行处理。

通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:

1
2
3
4
5
6
7
8
9
10
11
12
>>> line='1,?'
>>> line=line.replace(',?',',nan')
>>> line
'1,nan'
>>> Z=line.split(',')
>>> Z
['1', 'nan']
>>> Z=np.array(Z,dtype=float)
>>> Z
array([  1.,  nan])
>>> imp.transform(Z)
array([[ 1.        3.66666667]])

上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。

关于缺失值(missing value)的处理---机器学习 Imputer的更多相关文章

  1. Sklearn 与 TensorFlow 机器学习实战—一个完整的机器学习项目

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. ...

  2. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  3. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  4. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  6. 2-6 R语言基础 缺失值

    #缺失值 Missing Value > #NaN不可识别NA> x <- c(1,NA,2,NA,3) > is.na(x)[1] FALSE TRUE FALSE TRUE ...

  7. python 缺失值处理(Imputation)

    一.缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格.nans或者是其他的占位符.但是这样的数据集并不能被scikit - learn算法兼容,因为 ...

  8. 机器学习算法( 五、Logistic回归算法)

    一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...

  9. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. Android学习笔记_16_添加多个Activity、参数传递、请求码和结果码使用

    一.添加新的Activity步骤: 第一步:新建一个继承Activity的类,如:NewActivity public class NewActivity extends Activity { @Ov ...

  2. MVC5 Attribute(特性)

    AuthorizeAttribute:一般用来判断权限 ActionFilterAttribute:方法执行前后动作 OutputCacheAttribute:输出缓存设置 注:我们创建名称的时候请带 ...

  3. ipython notebook开通远程

    之前只是会用,别人告诉我命令和大概怎么设置的,今天自己搭建才发现一知半解搞不定啊. 目的:远程通过ipython notebook调用服务器. 服务器是ubuntu16.04 本地机器win7 配置方 ...

  4. C++的抽象类、虚函数、虚基类和java的抽象类和接口

    简单整理如下: C++虚函数 == java普通函数 C++纯虚函数 == java抽象函数 C++抽象类 == java抽象类 C++虚基类(全都是纯虚函数) == java接口

  5. spring boot 搭建基本套路《1》

    1. Spring复习 Spring主要是创建对象和管理对象的框架. Spring通过DI实现了IoC. Spring能很大程度的实现解耦. 需要掌握SET方式注入属性的值. 需要理解自动装配. 需要 ...

  6. httpd的prefork、worker、event

    Apache(httpd) 有3种核心MPM(Multi-Processing Module,多进程处理模块)工作模式,分别是prefork,worker和event,其中httpd-2.2的even ...

  7. 【HCNE题型自我考究】

      H3CNE题目归结 制定标准 组织: 802.1X协议起源于标准的无线局域网协议802.11.主要目的是为了解决有线局域网用户的接入认证问题. 426.一个包含有华为等多厂商设备的交换网络,其VL ...

  8. 关于parseInt的看法

    ​ 前面在看题目的时候 偶然看到 使用parseInt 来进行整数判断 但是这里的parseInt是错误示范 之后了解了一下 发现这和函数 很有研究 先看看 w3c怎么说这个的 parseInt() ...

  9. JDK9 新特性

    JDK9 新特性目录导航 目录结构 模块化系统 jshell 多版本兼容JAR 接口的私有方法 改进try-with-resourcs 改进砖石操作符 限制使用单独下划线标识符 String存储结构变 ...

  10. 332. Reconstruct Itinerary

    class Solution { public: vector<string> path; unordered_map<string, multiset<string>& ...