关于缺失值(missing value)的处理

在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。

首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。

使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:

1
2
3
4
5
6
7
8
>>> type(np.NaN)
<type 'float'>
>>> type(np.nan)
<type 'float'>
>>> np.NaN
nan
>>> np.nan
nan

因此,如果要进行处理的数据集中包含缺失值一般步骤如下:

1、使用字符串'nan'来代替数据集中的缺失值;

2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;

3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。

代码如下:

1
2
3
4
5
6
7
8
9
10
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])
>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> imp.transform(Y)
array([[ 4.        2.        ],
       [ 6.        3.66666667],
       [ 7.        6.        ]])

上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。

当然也可以使用imp对象来对X数组本身进行处理。

通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:

1
2
3
4
5
6
7
8
9
10
11
12
>>> line='1,?'
>>> line=line.replace(',?',',nan')
>>> line
'1,nan'
>>> Z=line.split(',')
>>> Z
['1', 'nan']
>>> Z=np.array(Z,dtype=float)
>>> Z
array([  1.,  nan])
>>> imp.transform(Z)
array([[ 1.        3.66666667]])

上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。

关于缺失值(missing value)的处理---机器学习 Imputer的更多相关文章

  1. Sklearn 与 TensorFlow 机器学习实战—一个完整的机器学习项目

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. ...

  2. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  3. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  4. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  6. 2-6 R语言基础 缺失值

    #缺失值 Missing Value > #NaN不可识别NA> x <- c(1,NA,2,NA,3) > is.na(x)[1] FALSE TRUE FALSE TRUE ...

  7. python 缺失值处理(Imputation)

    一.缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格.nans或者是其他的占位符.但是这样的数据集并不能被scikit - learn算法兼容,因为 ...

  8. 机器学习算法( 五、Logistic回归算法)

    一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...

  9. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. 前端路由原理及vue-router介绍

    前端路由原理本质就是监听 URL 的变化,然后匹配路由规则,显示相应的页面,并且无须刷新.目前单页面使用的路由就只有两种实现方式 hash history www.test.com/##/ 就是 Ha ...

  2. Java基础——XML复习

    XML                 SGML : 标准通用置标语言    Standard Generailzed    Markup Language XML                   ...

  3. 代替eval执行字符串表达式

    function eval2(str) { var Fn = Function; return new Fn('return ' + str)(); }

  4. 自动化测试selenium教程

    什么是自动化测试: 自动帮我们测试一个系统里面的主要功能,一个app.电脑网站.网页,每个系里面许多的功能,好比一个淘宝页面,里面N多功能,登录.注册,推荐,商品详情.评论等等:软件生命周期:需求调研 ...

  5. Django-rest-framework(五)自定义功能

    我们可以在settings.py文件中定义登录,权限,分页,异常等的全局配置,如下所示 REST_FRAMEWORK = { 'DEFAULT_PAGINATION_CLASS': 'utils.pa ...

  6. 给xcode项目重命名

    在xcode项目开发中,经常会遇到需要修改项目名字的问题, 但是xcode本身修改项目名字比较麻烦,有时候修改的不完全,有时候修改了项目无法打开,无奈只能建一个新项目.这里提供一种修改xcode项目名 ...

  7. Flask中对MySQL的基本操作

    在Flask-SQLAlchemy中,插入.修改.删除操作,均由数据库会话管理. 会话用 db.session 表示.在准备把数据写入数据库前,要先将数据添加到会话中然后调用 commit() 方法提 ...

  8. 爬虫——BeautifulSoup4解析器

    BeautifulSoup用来解析HTML比较简单,API非常人性化,支持CSS选择器.Python标准库中的HTML解析器,也支持lxml的XML解析器. 其相较与正则而言,使用更加简单. 示例: ...

  9. 【c学习-9】

    /*内存练习*/ #include #include//引入内存分配库文件 int main(){ double* x; //定义整型指针和double指针 int* y; x=(double*)ma ...

  10. flask过滤器

    过滤器的本质就是函数.有时候我们不仅仅只是需要输出变量的值,我们还需要修改变量的显示,甚至格式化.运算等等,而在模板中是不能直接调用 Python 中的某些方法,那么这就用到了过滤器. 过滤器的使用方 ...