Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5

Sol

首先最重要的条件:\(H-L\)在\(10^5\)以内,这说明区间内\(gcd(i,j)<10^5\),那么我们可以直接枚举gcd是多少,然后进行计算。

具体地,我们把H和L都/=K,这样所求变成了\(gcd(a_1,a_2,...,a_n)=1\)的方案数。

我们设\(f[i]\)表示区间内\(gcd\)为i的方案数,那么\(f[i]\)可以再次通过除以\(i\)然后直接求区间长度的方式解决,但是这样我们会把\(\sum_{i|d}f[d]\)也算上,所以需要把i倍数的d减掉,倒推即可。

本题的三个小细节:

  1. 如果K在L和R的范围内,那么ans++。
  2. 如果\(L\%K\)不等于0,那么新的L等于\(L/K+1\),因为原来的L往后一小部分是不合法的,要去掉,内层统计时亦是如此。
  3. 要减去N个数都相同的方案,因为显然这种方案不成立,具体地,快速幂后面减个len就行。

时间复杂度\(O(nlogn)\)。

Code

#include <cstdio>
int N,K,L,R,l,r,M,m,F,f[100005],P=1e9+7;
int ksm(int a,int b){int res=1;for(;b;b>>=1,a=1ll*a*a%P) if(b&1) res=1ll*res*a%P;return res;}
int main()
{
scanf("%d%d%d%d",&N,&K,&L,&R);
if(L<=K&&K<=R) F++;
L=L%K?L/K+1:L/K,R/=K,M=R-L+1;
for(int i=M;i;i--)
{
l=L%i?L/i+1:L/i,r=R/i,m=r-l+1;
if(l<r){f[i]=(ksm(m,N)-m+P)%P;for(int j=(i<<1);j<=M;j+=i) f[i]=(f[i]-f[j]+P)%P;}
}
printf("%d\n",(F+f[1])%P);
}

【bzoj3930】选数 容斥原理+暴力的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. NOIP 2002提高组 选数 dfs/暴力

    1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...

  3. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  4. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  5. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  6. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  7. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  8. luoguP1036 选数 暴力AC题解

    luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述   输入格式 输出格式 输入输出样例 定义变量 我们令输 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. C Primer Plus学习笔记(九)- 数组和指针

    数组 数组由数据类型相同的同一系列元素组成 需要使用数组时,通过声明数组告诉编译器数组中内含多少元素和这些元素的类型 普通变量可以使用的类型,数组元素都可以用 float candy[365]; // ...

  2. win7下cygwin 中 root用户的设置

    问题描述: cygwin 在 win10下安装完成后使用当前用户登录后看所在磁盘的文件权限是没有问题的,但在cygwin编译出来的文件的权限为空,这个问题可以使用以下方法来解决: 解决办法: 将cyg ...

  3. HttpURLConnection连接网页和获取数据的使用实例

    HttpURLConnection是java.net 里面自带的一个类,非常好用.虽然现在很多人用阿帕奇的HttpClient,但HttpURLConnection也是个不错的选择. 其实使用方法非常 ...

  4. sql代码段添加数据

      declare @i int,@index int     set @i=1     set @index=0   while @i<1000000   begin    set @inde ...

  5. Sublime Text 套件介紹:Pretty JSON

    JSON,一個輕量級的資料交換語言,目前許多網站AJAX request的回應結果都是JSON格式   以下是一個標準的JSON格式   1 2 3 4 5 6 7 8 9 10 11 12 13 1 ...

  6. sql server生成递归日期、连续数据

    WITH Date AS ( SELECT CAST('2008-08-01' AS DATETIME) da UNION ALL FROM Date WHERE da < '2008-08-2 ...

  7. ubuntu搭建定时任务管理器

    一.安装golang 1.apt-get安装golang $ sudo apt-get update $ sudo apt-get install -y golang 2.创建Go语言的工作文件夹,并 ...

  8. SpringBoot13 利用mybatis-plus自动生成entity、dao、service、controller

    1 环境配置 = 2 新建一个新的springboot项目 2.1 选择一些必要的依赖 web jpa mysql <?xml version="1.0" encoding= ...

  9. webservice CXF 相关面试题

    Web Service的优点(1) 可以让异构的程序相互访问(跨平台)(2) 松耦合(3) 基于标准协议(通用语言,允许其他程序访问) 1:WEB SERVICE名词解释.JSWDL开发包的介绍.JA ...

  10. Linux 下五款出色的流媒体客户端

    数 字流媒体这几天几乎占据了我音乐收听的全部时间.近年来我为了收藏 CD 花费了数量可观的费用:但它们中的大部分现在正静静地躺在满是灰尘的角落里.基本上所有的音乐流媒体服务所提供的的音质都不如 CD ...