Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5

Sol

首先最重要的条件:\(H-L\)在\(10^5\)以内,这说明区间内\(gcd(i,j)<10^5\),那么我们可以直接枚举gcd是多少,然后进行计算。

具体地,我们把H和L都/=K,这样所求变成了\(gcd(a_1,a_2,...,a_n)=1\)的方案数。

我们设\(f[i]\)表示区间内\(gcd\)为i的方案数,那么\(f[i]\)可以再次通过除以\(i\)然后直接求区间长度的方式解决,但是这样我们会把\(\sum_{i|d}f[d]\)也算上,所以需要把i倍数的d减掉,倒推即可。

本题的三个小细节:

  1. 如果K在L和R的范围内,那么ans++。
  2. 如果\(L\%K\)不等于0,那么新的L等于\(L/K+1\),因为原来的L往后一小部分是不合法的,要去掉,内层统计时亦是如此。
  3. 要减去N个数都相同的方案,因为显然这种方案不成立,具体地,快速幂后面减个len就行。

时间复杂度\(O(nlogn)\)。

Code

#include <cstdio>
int N,K,L,R,l,r,M,m,F,f[100005],P=1e9+7;
int ksm(int a,int b){int res=1;for(;b;b>>=1,a=1ll*a*a%P) if(b&1) res=1ll*res*a%P;return res;}
int main()
{
scanf("%d%d%d%d",&N,&K,&L,&R);
if(L<=K&&K<=R) F++;
L=L%K?L/K+1:L/K,R/=K,M=R-L+1;
for(int i=M;i;i--)
{
l=L%i?L/i+1:L/i,r=R/i,m=r-l+1;
if(l<r){f[i]=(ksm(m,N)-m+P)%P;for(int j=(i<<1);j<=M;j+=i) f[i]=(f[i]-f[j]+P)%P;}
}
printf("%d\n",(F+f[1])%P);
}

【bzoj3930】选数 容斥原理+暴力的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. NOIP 2002提高组 选数 dfs/暴力

    1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...

  3. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  4. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  5. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  6. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  7. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  8. luoguP1036 选数 暴力AC题解

    luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述   输入格式 输出格式 输入输出样例 定义变量 我们令输 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. 使用springboot写一个简单的测试用例

    使用springboot写一个简单的测试用例 目录结构 pom <?xml version="1.0" encoding="UTF-8"?> < ...

  2. Python Twisted系列教程12:改进诗歌下载服务器

    作者:dave@http://krondo.com/a-poetry-transformation-server/  译者:杨晓伟(采用意译) 你可以从这里从头阅读这个系列. 新的服务器实现 这里我们 ...

  3. flask系列四之SQLAlchemy(二)表关系

    一.SQLAlchemy外键约束 1.创建外键约束表结构 目标:建立两个表“用户表(user)”和“问题表( question)”,其中问题表中的作者id是是用户表的id即外键的关系.(一个用户可以有 ...

  4. Python __getattribute__ vs __getattr__

    # 例子在原来的基础上简化了一下,排除依赖和干扰,详细参见原项目 class UrlGenerator(object): def __init__(self, root_url): self.url ...

  5. leetcode693

    class Solution { public: bool hasAlternatingBits(int n) { ; while (n) { ; ) { last = x; } else { if ...

  6. jquery slideDown效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  7. 非常详细的ok6410的linux系统移植…

    目录 Linux 3.3.5系统移植 2 LED驱动移植 8 按键驱动移植 9 LCD驱动移植 11 DM9000网卡驱动移植 14 搭建NFS网络文件系统 25 移植触摸屏驱动 38 移植Qt4.8 ...

  8. Java多线程-线程的同步(同步方法)

    线程的同步是保证多线程安全访问竞争资源的一种手段.线程的同步是Java多线程编程的难点,往往开发者搞不清楚什么是竞争资源.什么时候需要考虑同步,怎么同步等等问题,当然,这些问题没有很明确的答案,但有些 ...

  9. 判断手机使用网络wifi 2G 3G

    ConnectivityManager cManager = (ConnectivityManager) this .getSystemService(Context.CONNECTIVITY_SER ...

  10. Zookeeper Api(java)入门与应用

    如何使用 Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储 ...