题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794

题意概述:
  给出一个N*M的网格。网格上有一些点是障碍,不能经过。行走的方式是向右下角跳马步。求有多少种方案可以从(1,1)走到(N,M)。
  多组数据,组数不超过25。N,M<=1e18。

分析:

  还是水题。。。(我写这个的原因只是因为我第一次用lucas)分析一下可以发现横跳和纵跳各自的步数是确定的,所以变成了一个组合数问题。

  当有障碍的时候按照第一次碰到的障碍分类,先把棋盘当成完全没有障碍,然后扣掉这些方案即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int mo=;
typedef long long LL; LL N,M,R;
int inv[mo],J[mo],Ji[mo];
struct XY{
LL x,y;
friend bool operator < (XY a,XY b){
return a.x<b.x||a.x==b.x&&a.y<b.y;
}
friend bool operator == (XY a,XY b){
return a.x==b.x&&a.y==b.y;
}
}p[];
int f[]; int Lucas(LL x,LL y)
{
if(x<y) return ;
if(x<mo&&y<mo) return 1ll*J[x]*Ji[x-y]%mo*Ji[y]%mo;
return 1ll*Lucas(x/mo,y/mo)*Lucas(x%mo,y%mo)%mo;
}
void ready()
{
inv[]=;
for(int i=;i<mo;i++)
inv[i]=1ll*inv[mo%i]*(mo-mo/i)%mo;
J[]=,Ji[]=;
for(int i=;i<mo;i++){
J[i]=1ll*J[i-]*i%mo;
Ji[i]=1ll*Ji[i-]*inv[i]%mo;
}
}
int solve(LL n,LL m)
{
if((*n-m-)<||(*n-m-)%||(*m-n-)<||(*m-n-)%) return ;
LL a=(*m-n-)/,b=(*n-m-)/;
return Lucas(a+b,b);
}
int main()
{
ready();
int T=;
while(cin>>N>>M>>R){
int ans=solve(N,M);
if(R){
for(int i=;i<=R;i++)
cin>>p[i].x>>p[i].y;
sort(p+,p+R+);
R=unique(p+,p+R+)-p-;
memset(f,,sizeof(f));
for(int i=;i<=R;i++){
f[i]=solve(p[i].x,p[i].y);
for(int j=;j<i;j++)if(p[j].x<p[i].x&&p[j].y<p[i].y)
f[i]=(f[i]-1ll*f[j]*solve(p[i].x-p[j].x+,p[i].y-p[j].y+)%mo+mo)%mo;
}
for(int i=;i<=R;i++)
ans=(ans-1ll*f[i]*solve(N-p[i].x+,M-p[i].y+)%mo+mo)%mo;
}
cout<<"Case #"<<++T<<": "<<ans<<'\n';
}
return ;
}

HDU 5794 A Simple Chess Lucas定理+dp的更多相关文章

  1. HDU 5794 A Simple Chess (Lucas + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...

  2. HDU 5794 - A Simple Chess

    HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...

  3. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  4. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  5. HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)

    题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...

  6. HDU 5794 A Simple Chess ——(Lucas + 容斥)

    网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...

  7. hdu_5794_A Simple Chess(lucas+dp)

    题目链接:hdu_5794_A Simple Chess 题意: 给你n,m,从(1,1)到(n,m),每次只能从左上到右下走日字路线,有k(<=100)的不能走的位置,问你有多少方案 题解: ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

随机推荐

  1. data-ng-show指令

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  2. MQTT初始篇笔记整理

    MQTT简介 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输),基于TCP/IP 协议栈而构建,虽然叫消息队列遥测传输,但是她与消息队列毫无关系,她 ...

  3. c#本地缓存实现

    用了一段时间java,java实现服务端程序很简单,有很多公共开源的组件或者软件.但是c#的很少. 现在准备自己写点东西,学习下新的东西,总结下c#的内容以及我们经常用的内容,抽离成类,组件,模型.方 ...

  4. vue入门:实现图片点击切换

    1.实现功能 2.目录结构 3.代码 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  5. 2018 Wannafly summer camp Day3--Travel

    Travel 描述 题目描述: 魔方国有n座城市,编号为1~n.城市之间通过n-1条无向道路连接,形成一个树形结构. 澜澜打算在魔方国进行mm次旅游,每次游览至少一座城市.为了方便,每次旅游游览的城市 ...

  6. 如何用hexo搭建个人博客. 亲测有效

    搭建博客: 安装node.js和git 以管理员身份进入cmd. 输入:  npm install -g cnpm --registry=https://registry.npm.taobao.org ...

  7. Failed to introspect bean class [org.springframework.orm.hibernate5.LocalSessionFactoryBean] for lookup method metadata: could not find class that it depends on; nested exception is java.lang.NoClass

    依赖引入  错误可能版本 不对 Failed to introspect bean class [org.springframework.orm.hibernate5.LocalSessionFact ...

  8. Oracle数据库之 PL SQL 学习笔记

    1.定义基本变量: 2.引用型的变量: set serveroutput on   declare pename emp.ename%type; psal emp.sal%type;   begin ...

  9. Go web表单

    package main import ( "fmt" "html/template" "log" "net/http" ...

  10. Java+Selenium3自动化测试框架设计系列--href="javascript:void(0)"如何获得元素定位

    经过前面两篇文章的铺 垫,我们这篇介绍,webdriver如何处理,一个浏览器上多个窗口之间切换的问题.我们先脑补这样一个测试场景,你在页面A点击一个连接,会在新的 tab窗口打开页面B,这个时候,你 ...