题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794

题意概述:
  给出一个N*M的网格。网格上有一些点是障碍,不能经过。行走的方式是向右下角跳马步。求有多少种方案可以从(1,1)走到(N,M)。
  多组数据,组数不超过25。N,M<=1e18。

分析:

  还是水题。。。(我写这个的原因只是因为我第一次用lucas)分析一下可以发现横跳和纵跳各自的步数是确定的,所以变成了一个组合数问题。

  当有障碍的时候按照第一次碰到的障碍分类,先把棋盘当成完全没有障碍,然后扣掉这些方案即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int mo=;
typedef long long LL; LL N,M,R;
int inv[mo],J[mo],Ji[mo];
struct XY{
LL x,y;
friend bool operator < (XY a,XY b){
return a.x<b.x||a.x==b.x&&a.y<b.y;
}
friend bool operator == (XY a,XY b){
return a.x==b.x&&a.y==b.y;
}
}p[];
int f[]; int Lucas(LL x,LL y)
{
if(x<y) return ;
if(x<mo&&y<mo) return 1ll*J[x]*Ji[x-y]%mo*Ji[y]%mo;
return 1ll*Lucas(x/mo,y/mo)*Lucas(x%mo,y%mo)%mo;
}
void ready()
{
inv[]=;
for(int i=;i<mo;i++)
inv[i]=1ll*inv[mo%i]*(mo-mo/i)%mo;
J[]=,Ji[]=;
for(int i=;i<mo;i++){
J[i]=1ll*J[i-]*i%mo;
Ji[i]=1ll*Ji[i-]*inv[i]%mo;
}
}
int solve(LL n,LL m)
{
if((*n-m-)<||(*n-m-)%||(*m-n-)<||(*m-n-)%) return ;
LL a=(*m-n-)/,b=(*n-m-)/;
return Lucas(a+b,b);
}
int main()
{
ready();
int T=;
while(cin>>N>>M>>R){
int ans=solve(N,M);
if(R){
for(int i=;i<=R;i++)
cin>>p[i].x>>p[i].y;
sort(p+,p+R+);
R=unique(p+,p+R+)-p-;
memset(f,,sizeof(f));
for(int i=;i<=R;i++){
f[i]=solve(p[i].x,p[i].y);
for(int j=;j<i;j++)if(p[j].x<p[i].x&&p[j].y<p[i].y)
f[i]=(f[i]-1ll*f[j]*solve(p[i].x-p[j].x+,p[i].y-p[j].y+)%mo+mo)%mo;
}
for(int i=;i<=R;i++)
ans=(ans-1ll*f[i]*solve(N-p[i].x+,M-p[i].y+)%mo+mo)%mo;
}
cout<<"Case #"<<++T<<": "<<ans<<'\n';
}
return ;
}

HDU 5794 A Simple Chess Lucas定理+dp的更多相关文章

  1. HDU 5794 A Simple Chess (Lucas + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...

  2. HDU 5794 - A Simple Chess

    HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...

  3. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  4. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  5. HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)

    题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...

  6. HDU 5794 A Simple Chess ——(Lucas + 容斥)

    网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...

  7. hdu_5794_A Simple Chess(lucas+dp)

    题目链接:hdu_5794_A Simple Chess 题意: 给你n,m,从(1,1)到(n,m),每次只能从左上到右下走日字路线,有k(<=100)的不能走的位置,问你有多少方案 题解: ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

随机推荐

  1. PL/SQL dev 工具连接远程服务器oracle注意点

    由于Oracle的庞大,有时候我们需要在只安装Oracle客户端如plsql.toad等的情况下去连接远程数据库,可是没有安装Oracle就没有一切的配置文件去支持. 最后终于发现一个很有效的方法,O ...

  2. 纯 HTML5 APP与原生APP的差距在哪?

    纯 HTML5 APP与原生APP的差距在哪? 写过一些纯H5的APP,虽然开发起来的确很快很舒服,但和原生比起来纯H5APP还是有很多问题,主要聚集在以下几个方面: 1.动画 动画有很多种,比如侧边 ...

  3. .net 导出Excel插件Npoi的使用

    1.NuGet搜索Npoi并安装 2.添加引用将包引用进来 3.Controller里引用 4.使用 public ActionResult ExportExcel() { plist = 数据源 H ...

  4. WebGL学习笔记(2)

    根据上一篇学习笔记,理解WebGL的工作原理及基本调用代码后,可以开始研究3D顶点对象的缩放.旋转.以及对对象进行可交互(鼠标或键盘控制)的旋转或者缩放. 要理解对象的旋转/缩放需要首先学习矩阵的计算 ...

  5. C.Sum 2017 ACM-ICPC 亚洲区(西安赛区)网络赛

    题目来源:Sum 限制:1000ms 32768K Define the function S(x) for xx is a positive integer. S(x) equals to the ...

  6. HTTP基本内容

    *********************HTTP基本交互*************************** HTTP请求格式:HTTP 请求由三部分组成:请求行.请求头和请求正文请求行: 请求方 ...

  7. mysql5.7 本地计算机上的mysql 服务启动后停止 的问题解决

    mysql5.7 本地计算机上的mysql 服务启动后停止. 问题: 在cmd 下mysql服务mysql服务无法启动任何错误法启动 服务没有报告任何错误     在服务里面启动是   早上来了发现项 ...

  8. Java基础题:集合、String、性能、线程

    转载自:Java基础题 https://yq.aliyun.com/articles/601786?utm_content=m_1000001149

  9. SQL中EXCEPT函数在 Mysql 和 sqlServer 中的替代方法

    示例摘自:极客代码:http://wiki.jikexueyuan.com/project/sql/useful-functions/except-clause.html EXCEPT 子句 EXCE ...

  10. TP5部署服务器问题总结

    及最近部署TP5遇到了很多坑,各种环境下都会出现一些问题,下面是我记录的排坑之路 先说最简单的lnmp一键安装包,我用的是1.5稳定版 安装命令:wget http://soft.vpser.net/ ...