【BZOJ4766】文艺计算姬(prufer序列)
大致题意: 让你求一个两边各有\(n\)和\(m\)个点的完全二分图有多少个生成树。
\(prufer\)序列
这是一道比较经典的利用\(prufer\)序列结论求解答案的计数题。
大致思路
考虑一张二分图求解\(prufer\)序列,由于\(prufer\)序列求解时最后剩下的两个点必定有边相连,因此这两个点必定在二分图两侧。
由于\(prufer\)序列中记录的是每个点相邻的点,也就是说,删去一个左边的点,则就会有一个右边的点被加入\(prufer\)序列。
因此,序列中共会有\(n-1\)个右边的点和\(m-1\)个左边的点。
所以答案就是\(m^{n-1}\cdot n^{m-1}\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename Ts>
#define Reg register
#define RI Reg int
#define RL Reg LL
#define Con const
#define CI Con int&
#define CL Con LL&
#define I inline
#define W while
#define LL long long
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
#define Qinv(x) Qpow(x,X-2)
using namespace std;
LL n,m,X;
I LL Qmul(RL x,RL y) {RL t=0;W(y) y&1&&Inc(t,x),(x<<=1)>=X&&(x-=X),y>>=1;return t;}//快速乘
I LL Qpow(RL x,RL y) {RL t=1;W(y) y&1&&(t=Qmul(t,x)),x=Qmul(x,x),y>>=1;return t;}//快速幂
I LL XSum(CL x,CL y) {return x+y>=X?x+y-X:x+y;}//取模优化求和
int main()
{
scanf("%lld%lld%lld",&n,&m,&X),printf("%lld",Qmul(Qpow(n,m-1),Qpow(m,n-1)));//计算并输出答案
return 0;
}
【BZOJ4766】文艺计算姬(prufer序列)的更多相关文章
- bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...
- BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...
- [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...
- BZOJ4766: 文艺计算姬(Prufer序列)
题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...
- BZOJ.4766.文艺计算姬(Prufer)
题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从 ...
- Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...
- [bzoj4766]文艺计算姬——完全二分图生成树个数
Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...
- 【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...
- 【BZOJ4766】文艺计算姬 [暴力]
文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description "奋战三星期,造台计算机 ...
- bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...
随机推荐
- Node.js frameworks
1. Express 2. Koa 3. LoopBack egghead.io What is egghead? egghead is a group of working web developm ...
- PHP CURL_ERRNO 77
项目中碰到curl https偶尔出现false,错误码77,可以尝试下面两种解决方法: 1.确认安装机器ca-certificates,重启PHP.设置curl_setopt($ch, CURLOP ...
- MongoDB数据库进阶 --- 增删查改...
注意: monogdb数据在使用之后必须及时 mongodb.close()否则后台崩溃. 在之前的文章中,我已经介绍了什么事MongoDB以及怎么在windows下安装MongoDB等等基本知识. ...
- 第三章:ionic环境搭建之windows篇
下面是在windows操作系统上面安装ionic的步骤,已经在Windows 10/ 7/ XP下面通过验证. 安装JDK 1.1 下载(http://www.oracle.com/technetwo ...
- OpenLayers 案例一
序 OpenLayers 是一个专为Web GIS 客户端开发提供的JavaScript 类库包,用于实现标准格式发布的地图数据访问. 例子 <!doctype html> <htm ...
- 【卷土重来之C#学习笔记】(二)c#编程概述
(1)开始C#,一个简单的程序Hello Word 开始 using System; //使用了System的命名空间 using System.Collections.Generic; us ...
- java线程的interrupt方法
java现成的interrupt方法比较容易误导新手,它其实是不会中断(停止)当前的线程,只是标志一下当前线程的某个状态值(中断标志位),并且这个状态为只对阻塞方法(比如说: ...
- [转]前端HTML-CSS规范
原文:http://www.cnblogs.com/whitewolf/p/4491707.html 黄金定律 一个项目应该永远遵循同一套编码规范! 不管有多少人共同参与同一项目,一定要确保每一行代码 ...
- 2017 年 9 月 27 日 js(1.两个select 内容互换 2.单选按钮 同意可点击下一步 3. 全选框)
1.两个select 内容互换 <!DOCTYPE html><html> <head> <meta charset="UTF- ...
- [LeetCode]23. Merge k Sorted Lists合并K个排序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...