01分数规划复习。

这东西有一个名字叫做最优比率环。

首先这个答案具有单调性,我们考虑如何检验。

设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = e$,我们需要检验的就是$\sum_{i = 1}^{n}(F_i - mid * T_i) \geq 0$是否存在。

感觉这玩意不好算,再变形一下:$\sum_{i = 1}^{n}(e * T_i - F_i) < 0$,就变成一个负环的检验了。

$F_i$应当可以任取一条有向边的入点和出点。

注意二分时的边界问题。

时间复杂度$O(logn (spfa???))$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long double db; const int N = ;
const int M = ;
const db inf = 1e10;
const db eps = 1e-; int n, m, tot = , head[N];
db dis[N], a[N];
bool vis[N], ex; struct Edge {
int to, nxt;
db val;
} e[M]; inline void add(int from, int to, db val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} template <typename T>
inline void chkMax(T &x, T y) {
if(y > x) x = y;
} template <typename T>
inline void chkMin(T &x, T y) {
if(y < x) x = y;
} void dfs(int x, db mid) {
if(ex) return;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + mid * e[i].val - a[y]) {
dis[y] = dis[x] + mid * e[i].val - a[y];
if(vis[y]) {
ex = ;
return;
}
dfs(y, mid);
}
}
vis[x] = ;
} inline bool chk(db mid) {
for(int i = ; i <= n; i++) {
dis[i] = 0.0;
vis[i] = ;
}
ex = ; for(int i = ; i <= n; i++) {
dfs(i, mid);
if(ex) break;
} return ex;
} int main() {
scanf("%d%d", &n, &m);
db ln = 0.0, rn = 0.0, mid, res;
for(int i = ; i <= n; i++) scanf("%Lf", &a[i]);
for(int i = ; i <= m; i++) {
int x, y; db v;
scanf("%d%d%Lf", &x, &y, &v);
add(x, y, v);
rn += v;
} for(; ln + eps <= rn; ) {
mid = (ln + rn) * 0.5;
if(chk(mid)) ln = mid, res = mid;
else rn = mid;
} printf("%.2Lf\n", res);
return ;
}

Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows的更多相关文章

  1. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  2. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  3. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  4. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  5. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  6. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  7. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  8. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  9. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

随机推荐

  1. DbEntry 简单实现

    在着手编码之前首先安装DbEntry DbEntry.Net.4.1.Setup.zip 在建立类库时选择 DbEntryClassLibrary 如图 DbEntryClassLibrary1 中建 ...

  2. 【spring源码学习】Spring的IOC容器之BeanPostProcessor接口学习

    一:含义作用 ==>BeanPostProcessor接口是众多Spring提供给开发者的bean生命周期内自定义逻辑拓展接口中的一个 二:接口定义 package org.springfram ...

  3. JavaScript define

    1. AMD的由来 前端技术虽然在不断发展之中,却一直没有质的飞跃.除了已有的各大著名框架,比如Dojo,jQuery,ExtJs等等,很多公司也都有着自己的前端开发框架.这些框架的使用效率以及开发质 ...

  4. 支付宝RSA签名

    1.参考网上相关文章,开放php中的openssl,但使用网上例子调用openssl_pkey_new,一直报100013错误.后改用用支付宝提供的SDKdemo程序 发现使用提供的privkye,可 ...

  5. 洛谷 1291 [SHOI2002]百事世界杯之旅

    题目:https://www.luogu.org/problemnew/show/P1291 大水题!套路!模板! 稍微注意一下输出就行了. #include<iostream> #inc ...

  6. Java-Runoob:Java 条件语句

    ylbtech-Java-Runoob:Java 条件语句 1.返回顶部 1. Java 条件语句 - if...else 一个 if 语句包含一个布尔表达式和一条或多条语句. 语法 if 语句的语法 ...

  7. json数据url传递到php后台

    1.js进行encodeURI jsonData = encodeURI(jsonData); 2.php进行urldecode $urldecodeJson = urldecode($json); ...

  8. Linux性能监测:内存篇

    在操作系统里,虚拟内存被分成页,在 x86 系统上每个页大小是 4KB.Linux 内核读写虚拟内存是以 “页” 为单位操作的,把内存转移到硬盘交换空间(SWAP)和从交换空间读取到内存的时候都是按页 ...

  9. js操作history

    js操作history pushState pushState只会在当前history中添加一条记录,并不会刷新浏览器 history.pushState({}, "my title&quo ...

  10. 泛型集合List<T>