转自:https://blog.csdn.net/u010159842/article/details/54407745,感谢分享!

我们不推荐使用pickle或cPickle来保存Keras模型

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

  • 模型的结构,以便重构该模型
  • 模型的权重
  • 训练配置(损失函数,优化器等)
  • 优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译

例子:

from keras.models import load_model

model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model # deletes the existing model # returns a compiled model
# identical to the previous one
model = load_model('my_model.h5') 注: 如果有custom 的loss function, 要用下面的方式来load model
model = load_model('model/multi_task/try.h5', custom_objects={'loss_max': loss_max})

如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用:

# save as JSON
json_string = model.to_json() # save as YAML
yaml_string = model.to_yaml()

这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。

当然,你也可以从保存好的json文件或yaml文件中载入模型:

# model reconstruction from JSON:
from keras.models import model_from_json
model = model_from_json(json_string) # model reconstruction from YAML
model = model_from_yaml(yaml_string)

如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。注意,在使用前需要确保你已安装了HDF5和其Python库h5py

model.save_weights('my_model_weights.h5')

如果你需要在代码中初始化一个完全相同的模型,请使用:

model.load_weights('my_model_weights.h5')

如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:

model.load_weights('my_model_weights.h5', by_name=True)

例如:

"""
假如原模型为:
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))
model.add(Dense(3, name="dense_2"))
...
model.save_weights(fname)
"""
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1")) # will be loaded
model.add(Dense(10, name="new_dense")) # will not be loaded # load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)

keras 保存模型的更多相关文章

  1. Keras保存模型并载入模型继续训练

    我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_util ...

  2. keras 保存模型和加载模型

    import numpy as npnp.random.seed(1337) # for reproducibility from keras.models import Sequentialfrom ...

  3. keras 中模型的保存

    参考:https://www.cnblogs.com/weiyinfu/p/9788179.html#0 1.model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台,不能保存 ...

  4. keras 保存训练的最佳模型

    转自:https://anifacc.github.io/deeplearning/machinelearning/python/2017/08/30/dlwp-ch14-keep-best-mode ...

  5. Keras框架下的保存模型和加载模型

    在Keras框架下训练深度学习模型时,一般思路是在训练环境下训练出模型,然后拿训练好的模型(即保存模型相应信息的文件)到生产环境下去部署.在训练过程中我们可能会遇到以下情况: 需要运行很长时间的程序在 ...

  6. 【4】TensorFlow光速入门-保存模型及加载模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  7. caffe使用ctrl-c不能保存模型

    caffe使用Ctrl-c 不能保存模型: 是因为使用的是 tee输出日志 解决方法:kill -s SIGINT <proc_id> 或者使用 GLOG_log_dir=/path/to ...

  8. sklearn保存模型-【老鱼学sklearn】

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  9. pytorch加载和保存模型

    在模型完成训练后,我们需要将训练好的模型保存为一个文件供测试使用,或者因为一些原因我们需要继续之前的状态训练之前保存的模型,那么如何在PyTorch中保存和恢复模型呢? 方法一(推荐): 第一种方法也 ...

随机推荐

  1. python之freshman00

    编译型vs解释型 编译型优点:编译器一般会有预编译的过程对代码进行优化.因为编译只做一次,运行时不需要编译,所以编译型语言的程序执行效率高.可以脱离语言环境独立运行.缺点:编译之后如果需要修改就需要整 ...

  2. STM32F0 中 ADC 多通道转换结果相同的问题

    前言 前段时间调试 STM32F030 的 ADC,在多通道转换时遇到了奇怪的问题,使用官方的例程和库函数连续转换多个 ADC 通道,得到的几个通道的结果是一样的,解决办法参考了 关于STM32F0系 ...

  3. 【转】LAMBDAFICATOR: Crossing the gap from imperative to functional programming through refactorings

    Link:http://refactoring.info/tools/LambdaFicator/ Problem Description Java 8 will support lambda exp ...

  4. window7下karma 报 The header content contains invalid characters BUG

    打开你的依赖node_modules\karma\node_modules\connect\lib\patch.js 将里面的setHeader方法改成下面这样,干掉序列化日期时出现的中文 res.s ...

  5. mysql数据库知识

    学而时习之,不亦说乎!                              --<论语> 数据库所有操作的总结.   1.mysql的数据库服务为mysqld.exe   windo ...

  6. PIE SDK栅格数据集的读写

    1. 功能简介 栅格数据包含很多信息,在数据的运用中需要对数据的信息进行读取或写入,目前PIE SDK支持多种数据格式的数据读取和写入,下面对栅格数据格式的数据读写功能进行介绍. 2. 功能实现说明 ...

  7. PIE SDK栅格拉伸渲染

    1. 功能简介 栅格数据拉伸渲染是对指定的波段进行图像拉伸,并设置拉伸之后的颜色带,根据像元值和颜色带进行数据渲染. 2. 功能实现说明 2.1. 实现思路及原理说明 第一步 实例化拉伸渲染对象示例 ...

  8. PIE SDK面元素的绘制

    1. 功能简介 在数据的处理中会用到线元素的绘制,目前PIE SDK支持IFillSymbol接口,FillSymbol对象是用于修饰填充面状对象的符号,它包括MarkerFillSymbol(由点状 ...

  9. PIE SDK缨帽变换

    1.算法功能简介 缨帽变换是根据多光谱遥感中土壤.植被等信息在多维光谱空间中信息分布结构对图像做的经验性线性正交变换. PIE 支持对 Landsat MSS. Landsat 5 TM.Landsa ...

  10. js插件编程-tab框

    JS代码 (function (w) { //tab对象 function Tab(config) { //定义变量,防止变量污染 this.tabMenus=null; this.tabMains= ...