loj2540 「PKUWC 2018」随机算法
pkusc 快到了……做点题涨涨 rp。
记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立集大小。那么枚举一下哪些点 \(j\) 不在 \(S\) 里,记 \(w_i\) 表示 \(i\) 和与之相邻的点集,则 \(f(S \cup w_j,i+1) \leftarrow f(S \cup w_j,i+1) + f(S,i) \times A_{n-|S|-1}^{|w_j-(w_j \cap S)|-1}\)。
然而对于一个集合 \(S\),它的最大独立集大小是确定的,那么就来一个数组 \(mx_S\) 来记录其最大独立集大小。当最大独立集大小更新之时,\(dp_S\) 就清零然后再计数就行了。复杂度从 \(O(\)跑得过\()\) 变成了 \(O(\)更跑得过\()\),也就是\(O(n^22^n)\) 变成了 \(O(n2^n)\)……。
改进前:
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, w[25], uu, vv, jie[25], inv[25], dp[25][1050005], cnt[1050005];
const int mod=998244353;
int A(int x, int y){
// if(x<y) return 0;
return (ll)jie[x]*inv[x-y]%mod;
}
int main(){
cin>>n>>m;
for(int i=1; i<=m; i++){
scanf("%d %d", &uu, &vv);
uu--; vv--;
w[uu] |= 1<<vv;
w[vv] |= 1<<uu;
}
jie[0] = jie[1] = inv[0] = inv[1] = 1;
for(int i=2; i<=n; i++){
jie[i] = (ll)jie[i-1] * i % mod;
inv[i] = (ll)(mod - mod / i) * inv[mod%i] % mod;
}
for(int i=0; i<n; i++)
w[i] |= 1<<i;
for(int i=2; i<=n; i++)
inv[i] = (ll)inv[i-1] * inv[i] % mod;
for(int i=0; i<(1<<n); i++)
for(int j=0; j<n; j++)
if(i&(1<<j))
cnt[i]++;
dp[0][0] = 1;
for(int i=0; i<n; i++)
for(int s=0; s<(1<<n); s++)
if(dp[i][s])
for(int j=0; j<n; j++)
if(!(s&(1<<j)))
dp[i+1][s|w[j]] = (dp[i+1][s|w[j]] + (ll)dp[i][s] * A(n-cnt[s]-1, cnt[w[j]-(w[j]&s)]-1)%mod) % mod;
for(int i=n; i; i--)
if(dp[i][(1<<n)-1]){
cout<<(ll)dp[i][(1<<n)-1]*inv[n]%mod<<endl;
return 0;
}
return 0;
}
改进后:
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, w[25], uu, vv, jie[25], inv[25], dp[1050005], cnt[1050005];
int mx[1050005];
const int mod=998244353;
int A(int x, int y){
// if(x<y) return 0;
return (ll)jie[x]*inv[x-y]%mod;
}
int main(){
cin>>n>>m;
for(int i=1; i<=m; i++){
scanf("%d %d", &uu, &vv);
uu--; vv--;
w[uu] |= 1<<vv;
w[vv] |= 1<<uu;
}
jie[0] = jie[1] = inv[0] = inv[1] = 1;
for(int i=2; i<=n; i++){
jie[i] = (ll)jie[i-1] * i % mod;
inv[i] = (ll)(mod - mod / i) * inv[mod%i] % mod;
}
for(int i=0; i<n; i++)
w[i] |= 1<<i;
for(int i=2; i<=n; i++)
inv[i] = (ll)inv[i-1] * inv[i] % mod;
for(int i=0; i<(1<<n); i++)
for(int j=0; j<n; j++)
if(i&(1<<j))
cnt[i]++;
dp[0] = 1;
for(int s=0; s<(1<<n); s++)
if(dp[s])
for(int i=0; i<n; i++)
if(!(s&(1<<i))){
int t=s|w[i];
if(mx[t]<mx[s]+1) mx[t] = mx[s] + 1, dp[t] = 0;
if(mx[t]==mx[s]+1)
dp[t] = (dp[t] + (ll)dp[s] * A(n-cnt[s]-1, cnt[w[i]-(w[i]&s)]-1)%mod) % mod;
}
cout<<(ll)dp[(1<<n)-1]*inv[n]%mod<<endl;
return 0;
}
loj2540 「PKUWC 2018」随机算法的更多相关文章
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- 「PKUWC 2018」随机算法 (第二版,正解做法)
上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分.... 第一次做的时候光想练一练暴力...就没去想正解,谁知道正解比暴力好写不知道多少,mmp 设 f(S) 为 选集合S中的点可 ...
- 「PKUWC 2018」随机算法 (60分部分分做法)
明天就是CTSC的DAY 2了qwq,晚上敲敲暴力攒攒RP,果断随便看了个题就是打暴力hhhhh 前50% O(3^N) 暴力没什么好说的,我们设F[S][s]为已经选了S集合中的点,并且这个集合中的 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- loj2538 「PKUWC 2018」Slay the Spire
pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- 「PKUWC 2018」Minimax
传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...
随机推荐
- YII2.0 用GII创建视图文件后访问404
使用GII的CRUD Generator创建searchModelClass 和控制器类文件,视图文件后,访问控制器地址后出现404的情况. 创建过程如图所示 后来发现是控制器类 Controller ...
- 点按钮ajax get方法修改0或1状态封装成函数
最终效果 列表页面表格里点击按钮修改状态 按钮样式要引入bootstrap才可以用 本文件用的是laravel框架环境 larave路由里 Route::get('category/changesta ...
- Python学习之魔法方法
Python中会看到前后都加双下划线的函数名,例如 __init__(self),这类写法在Python中具有特殊的含义.如果对象使用了这类方法中的某一个,那么这个方法将会在特殊的情况下被执行,然而几 ...
- Nodejs模块初始化
模块初始化 一个模块中的JS代码仅在模块第一次被使用时执行一次,并在执行过程中初始化模块的导出对象.之后,缓存起来的导出对象被重复利用. 主模块 通过命令行参数传递给NodeJS以启动程序的模块被称为 ...
- Str_turn
public class Str_turn { public static void main(String args[]) { String Str1 = new String("This ...
- STL 入门 (17 暑假集训第一周)
快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...
- Shoot the Bullet(ZOJ3229)(有源汇上下界最大流)
描述 ensokyo is a world which exists quietly beside ours, separated by a mystical border. It is a utop ...
- 初步学习pg_control文件之十三
接前文,初步学习pg_control文件之十二 看这个: * backupStartPoint is the redo pointer of the backup start checkpoint, ...
- 【TRICK】[0,n)中所有大小为k的子集的方法
<< k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...
- java存储位置经典例子
String a="a";String b="b";String c="ab";String d="ab";String ...