Minimum Cost

Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 19088   Accepted: 6740

题目链接:http://poj.org/problem?id=2516

Description:

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input:

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output:

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input:

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output:

4
-1

题意:

这题理解好题意很关键,有n个商店,m个供应商,k种货物。

每个商店对每种货物都有一定的需求([0,3]),每个供应商也囤积了一定数量的每种货物([0,3])。

后面会输入k个矩阵,每个矩阵都是n*m的。

第K个矩阵里面,第i行第j列表示从j供应商到i商店运送第K种货物的花费。

最后求如若满足所有商店进货需求的最小花费,如果不能满足商店需求,就输出-1。

题解:

这里,每个供应商对于每种货物运送到不同的商店费用都是不一样的。

题目要求输入k个矩阵,我们考虑对于每种货物,都建一次图,源点连着所有的商店,供应点连着所有的汇点,边权都为他们所需要/拥有的货物个数,然后对于从j供应商到i商店运输的花费,都在其中间连一条容量为INF,费用为输入值的边。

最后跑k次最小费用流就行了。

另外注意的就是如果每次跑出来的最大流小于商店的需求,那么就是没解的。

最后,读懂题意很重要,我就是被坑在读题上面的...

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define t 200
#define INF 99999999
using namespace std;
typedef long long ll;
const int N = ;
int n,m,k,tot;
int head[N],need[N][N],supply[N][N],d[N],a[N],vis[N],p[N],pre[N];
struct Edge{
int v,next,c,w;
}e[(N*N)<<];
void adde(int u,int v,int c,int w){
e[tot].v=v;e[tot].next=head[u];e[tot].c=c;e[tot].w=w;head[u]=tot++;
e[tot].v=u;e[tot].next=head[v];e[tot].c=;e[tot].w=-w;head[v]=tot++;
}
int SPFA(int &flow,int &cost){
for(int i=;i<=t;i++) d[i]=a[i]=INF;d[]=;
memset(vis,,sizeof(vis));vis[]=;
memset(p,-,sizeof(p));memset(pre,-,sizeof(pre));
queue <int> q;q.push();
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(e[i].c> && d[v]>d[u]+e[i].w){
d[v]=d[u]+e[i].w;
p[v]=u;pre[v]=i;
a[v]=min(a[u],e[i].c);
if(!vis[v]){
vis[v]=;
q.push(v);
}
}
}
}
if(d[t]==INF) return ;
flow+=a[t];cost+=d[t]*a[t];
for(int i=t;i!=-;i=p[i]){
int edge=pre[i];
e[edge].c-=a[t];
e[edge^].c+=a[t];
}
return ;
}
int main(){
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
if(!n &&!m &&!k) break;
for(int i=;i<=n;i++)
for(int j=;j<=k;j++)
scanf("%d",&need[i][j]);
for(int i=;i<=m;i++)
for(int j=;j<=k;j++)
scanf("%d",&supply[i][j]);
int ans=;
bool flag=false;
for(int K=;K<=k;K++){
tot=;memset(head,-,sizeof(head));
for(int i=;i<=n;i++){
for(int j=,s;j<=m;j++){
scanf("%d",&s);
adde(i,j+n,INF,s);
}
}
int sum=;
for(int i=;i<=n;i++) adde(,i,need[i][K],),sum+=need[i][K];
for(int i=n+;i<=n+m;i++) adde(i,t,supply[i-n][K],);
if(flag) continue ;
int flow=,cost=;
while(SPFA(flow,cost));
if(sum>flow) flag=true;
ans+=cost;
}
if(flag) puts("-1");
else printf("%d\n",ans);
}
return ;
}

POJ2516:Minimum Cost(最小费用最大流)的更多相关文章

  1. POJ2516 Minimum Cost —— 最小费用最大流

    题目链接:https://vjudge.net/problem/POJ-2516 Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Tota ...

  2. Minimum Cost(最小费用最大流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  3. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

  4. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  5. POJ2516 Minimum Cost(最小费用最大流)

    一开始我把每个店主都拆成k个点,然后建图..然后TLE.. 看题解= =哦,愚钝了,k个商品是独立的,可以分别跑k次最小费用最大流,结果就是k次总和.. #include<cstdio> ...

  6. POJ2516 Minimum Cost【最小费用最大流】

    题意: 有N个客户,M个仓库,和K种货物.已知每个客户需要每种货物的数量,每个仓库存储每种货物的数量,每个仓库运输各种货物去各个客户的单位费用.判断所有的仓库能否满足所有客户的需求,如果可以,求出最少 ...

  7. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  8. poj-2516.minimum cost(k次费用流)

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 19883   Accepted: 7055 Des ...

  9. POJ - 2516 Minimum Cost(最小费用最大流)

    1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...

随机推荐

  1. Python学习:1.快速搭建python环境

    一.安装python 现在python有两个比较大的版本一个是python3.x一个是python2.x,python3.x相当于与python2.x是一个比较大的升级,但是python3.x没有向下 ...

  2. SSH远程登录和端口转发详解

     SSH远程登录和端口转发详解   介绍 SSH 是创建在应用层和传输层基础上的安全协议,为计算机上的 Shell(壳层)提供安全的传输和使用环境. SSH 只是协议,有多种实现方式,本文基于其开源实 ...

  3. C语言实例解析精粹学习笔记——33(扑克牌的结构表示)

    实例33: 使用“结构”定义一副扑克牌,并对变量赋值,输出结果 思路: 扑克牌有4种花色,用枚举类型表示花色,其他都是结构体的简单应用 程序代码: #include <stdio.h> # ...

  4. java 上溯造型与下塑造型

    父类: package com.neusoft.chapter07; public class Father { public int i = 1; public void say(){ System ...

  5. Spring + MySQL + Mybatis + Redis【二级缓存】执行流程分析

    一级缓存基于 PerpetualCache 的 HashMap 本地缓存,其存储作用域为 Session,当 Session flush 或 close 之后,该Session中的所有 Cache 就 ...

  6. 【转】Django添加静态文件设置

    STATIC_URL = '/statics/'STATIC_ROOT= os.path.join(BASE_DIR, 'statics')STATICFILES_DIRS = ( os.path.j ...

  7. JAVA中堆栈和内存分配详解(摘抄)

    在Java中,有六个不同的地方可以存储数据: 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制. 2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存 ...

  8. 30分钟快速搭建Web CRUD的管理平台--django神奇魔法

    加上你的准备的时间,估计30分钟完全够用了,因为最近在做爬虫管理平台,想着快速开发,没想到python web平台下有这么非常方便的框架,简洁而优雅.将自己的一些坑总结出来,方便给大家的使用. 准备环 ...

  9. C++学习010-将某个地址转化为指针

    如果需要将某个具体的地址转化为指针,可以直接使用类型那个转换来是实现. 实例如下 int main() { void* pData = (void*)(0x004001); std::cout < ...

  10. Android Spiner实现Key-Value

    原网址:http://www.eoeandroid.com/thread-29687-1-1.html?_dsign=02d5cd6a 学习到的方法,直接上代码了: 1.定义一个class publi ...