bzoj 5314: [Jsoi2018]潜入行动
Description
外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY已经联系好了黄金舰队,打算联合所有JSO
Ier抵御外星人的进攻。在黄金舰队就位之前,JYY打算事先了解外星人的进攻计划。现在,携带了监听设备的特工
已经秘密潜入了外星人的母舰,准备对外星人的通信实施监听。外星人的母舰可以看成是一棵n个节点、n-1条边的
无向树,树上的节点用1,2...n编号。JYY的特工已经装备了隐形模块,可以在外星人母舰中不受限制地活动,可以
神不知鬼不觉地在节点上安装监听设备。如果在节点u安装监听设备,则JYY能够监听与u直接相邻所有的节点的通
信。换言之,如果在节点u安装监听设备,则对于树中每一条边(u,v),节点v都会被监听。特别注意放置在节点u的
监听设备并不监听u本身的通信,这是JYY特别为了防止外星人察觉部署的战术。
JYY的特工一共携带了k个监听设备,现在JYY想知道,有多少种不同的放置监听设备的方法,能够使得母舰上所有
节点的通信都被监听?为了避免浪费,每个节点至多只能安装一个监听设备,且监听设备必须被用完。
Solution
设 \(f[x][i][0/1][0/1]\) 表示 \(x\) 子树内的点中选了 \(i\) 个点,\(x\) 是否选, \(x\) 是否被儿子覆盖
简单转移即可
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e5+10,mod=1e9+7;
int n,K,head[N],nxt[N*2],to[N*2],num=0,sz[N],f[N][105][2][2],g[105][2][2];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void dfs(int x){
sz[x]=f[x][1][1][0]=f[x][0][0][0]=1;
for(int P=head[x],u;P;P=nxt[P]){
if(sz[u=to[P]])continue;
dfs(u);
for(int i=min(sz[x],K);i>=0;i--)
for(int j=0;j<2;j++)for(int k=0;k<2;k++)g[i][j][k]=f[x][i][j][k],f[x][i][j][k]=0;
for(int i=min(sz[x],K);i>=0;i--)
for(int j=min(sz[u],K-i);j>=0;j--){
int sum=(1ll*f[u][j][0][0]+f[u][j][0][1]+f[u][j][1][0]+f[u][j][1][1])%mod;
f[x][i+j][1][0]=(f[x][i+j][1][0]+1ll*g[i][1][0]*(f[u][j][0][0]+f[u][j][0][1]))%mod;
f[x][i+j][1][1]=(f[x][i+j][1][1]+1ll*g[i][1][1]*sum+1ll*g[i][1][0]*(f[u][j][1][0]+f[u][j][1][1]))%mod;
f[x][i+j][0][1]=(f[x][i+j][0][1]+1ll*g[i][0][0]*f[u][j][1][1]+1ll*g[i][0][1]*(f[u][j][1][1]+f[u][j][0][1]))%mod;
f[x][i+j][0][0]=(f[x][i+j][0][0]+1ll*g[i][0][0]*f[u][j][0][1])%mod;
}
sz[x]+=sz[u];
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>K;
for(int i=1;i<n;i++){
gi(x);gi(y);
link(x,y);link(y,x);
}
dfs(1);
printf("%d\n",(f[1][K][0][1]+f[1][K][1][1])%mod);
return 0;
}
bzoj 5314: [Jsoi2018]潜入行动的更多相关文章
- 【BZOJ5314】[JSOI2018]潜入行动(动态规划)
[BZOJ5314][JSOI2018]潜入行动(动态规划) 题面 BZOJ 洛谷 题解 不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了 ...
- BZOJ5314: [Jsoi2018]潜入行动
BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...
- BZOJ5314:[JSOI2018]潜入行动——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5314 https://www.luogu.org/problemnew/show/P4516 ht ...
- [bzoj5314][Jsoi2018]潜入行动_树形背包dp
潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...
- BZOJ.5319.[JSOI2018]军训列队(主席树)
LOJ BZOJ 洛谷 看错了,果然不是\(ZJOI\)..\(jry\)给\(JSOI\)出这么水的题做T3么= = 感觉说的有点乱,不要看我写的惹=-= 对于询问\(l,r,k\),设\(t=r- ...
- BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】
题目链接 BZOJ5314 题解 设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数 然后转移即可 ...
- [loj2546][JSOI2018]潜入行动(树形DP)
题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...
- luogu P4516 [JSOI2018]潜入行动
LINK:潜入行动 初看题感觉很不可做 但是树形dp的状态过于明显. 容易设\(f_{x,j,l,r}\)表示x为根子树内放了j个设备且子树内都被覆盖l表示x是否被覆盖r表示x是否放设备的方案数. 初 ...
- [JSOI2018]潜入行动
题目 我好菜啊,嘤嘤嘤 原来本地访问数组负下标不会报\(RE\)或者\(WA\),甚至能跑出正解啊 这道题还是非常呆的 我们发现\(k\)很小,于是断定这是一个树上背包 发现在一个点上安装控制器并不能 ...
随机推荐
- firefox 59 无法使用 pac 代理上网
最近装了 firefox,电脑配置不太高,chrome 太吃内存了. 但是发现 SwitchyOmega的 pac 模式无法工作,这篇文章提到了两个思路, 其中network.dns.disableI ...
- 三、Node.js-HelloWorld案例
之前我们编写的JavaScript代码都是在浏览器中运行的,因此,我们可以直接在浏览器中敲代码,然后直接运行. 在Node,我们编写的JavaScript代码将不能在浏览器环境中执行了,而是在Node ...
- React基础篇(2) -- state&props&refs
内容简介 state props refs 行内样式及动态类名 state 基本介绍 React 把组件看成是一个状态机(State Machines).通过与用户的交互,实现不同状态,然后渲染 UI ...
- CBV请求流程源码分析
一.CBV流程解析 urls.py urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^book/', views.BookView.as ...
- CKEditor编辑器的使用方法
CKEditor 网页中实现所见即所得的编辑器. 使用步骤: 1.下载CKEditor 下载地址:http://ckeditor.com/download 2.添加CKEditor的文件夹到项目中 ...
- 【离散数学】 SDUT OJ 建图
建图 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Problem Description 编程使得程序可以接受一个图的点边 ...
- CentOS 中安装tomcat
1.安装tomcat前,需要安装JDK 2.下载tomcat安装包 wget http://mirrors.hust.edu.cn/apache/tomcat/tomcat-8/v8.5.31/bin ...
- 三元运算符,i++(先用后加) ++i (先加后用)区别
三元运算符是软件编程中的一个固定格式,语法是“条件表达式?表达式1:表达式2”.使用这个算法可以使调用数据时逐级筛选. 表达式:“()? :”. ()中进行二元运算 ?在运算,就形成三元运算符 i ...
- C++_标准模板库STL概念介绍3-函数对象
函数对象也叫做函数符(functor). 函数符是可以以函数方式和( )结合使用的任意对象. 包括函数名,指向函数的指针,重载了()运算符的类对象. 可以这样定义一个类: class Linear { ...
- React笔记:ref注意事项
[一]使用ref必须用在[类型式的组件]才起作用,用在[函数式的组件]是无效的. 下面这个例子用在了[函数式的组件]上,所以是无效的: function MyFunctionalComponent() ...