CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)
You are given n points with integer coordinates on the plane. Points are given in a way such that there is no triangle, formed by any three of these n points, which area exceeds S.
Alyona tried to construct a triangle with integer coordinates, which contains all n points and which area doesn't exceed 4S, but, by obvious reason, had no success in that. Please help Alyona construct such triangle. Please note that vertices of resulting triangle are not necessarily chosen from n given points.
Input
In the first line of the input two integers n and S (3 ≤ n ≤ 5000, 1 ≤ S ≤ 1018) are given — the number of points given and the upper bound value of any triangle's area, formed by any three of given n points.
The next n lines describes given points: ith of them consists of two integers xi and yi ( - 108 ≤ xi, yi ≤ 108) — coordinates of ith point.
It is guaranteed that there is at least one triple of points not lying on the same line.
Output
Print the coordinates of three points — vertices of a triangle which contains all n points and which area doesn't exceed 4S.
Coordinates of every triangle's vertex should be printed on a separate line, every coordinate pair should be separated by a single space. Coordinates should be an integers not exceeding 109 by absolute value.
It is guaranteed that there is at least one desired triangle. If there is more than one answer, print any of them.
Example
4 1
0 0
1 0
0 1
1 1
-1 0
2 0
0 2
题意:给定N个点,保证最大三角形面积不超过S,现在让你找一个面积不超过4*S的三角形,使之覆盖所有点。
思路:找到最大三角形X,然后按照平行四边形的样子,对称出3个三角形。即可覆盖所有点,否则可以反证X的面积不是最大。
所以按照上一题一样,先求凸包,然后求最大三角形的坐标,然后对称。 如图:
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define RC rotating_calipers
using namespace std;
const int maxn=;
struct point{
ll x,y;
point(ll x=,ll y=):x(x),y(y){}
bool operator <(const point &c) const { return x<c.x||(x==c.x&&y<c.y);}
point operator -(const point &c)const { return point(x-c.x,y-c.y);}
};
ll det(point A,point B){ return A.x*B.y-A.y*B.x;}
ll det(point O,point A,point B){ return det(A-O,B-O);}
point a[maxn],ch[maxn],A,B,C;
void convexhull(int n,int &top)
{
sort(a+,a+n+); top=;
for(int i=;i<=n;i++){
while(top>&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
int ttop=top;
for(int i=n-;i>=;i--){
while(top>ttop&&det(ch[top-],ch[top],a[i])<=) top--;
ch[++top]=a[i];
}
}
void rotating_calipers(point p[],int top)
{
ll ans=; int now;
rep(i,,top-){
int now=i+;
rep(j,i+,top-){
while(now<=top&&abs(det(p[i],p[j],p[now]))<abs(det(p[i],p[j],p[now+]))){
now++;
}
ll tmp=abs(det(p[i],p[j],p[now]));
if(tmp>ans) ans=tmp,A=p[i],B=p[j],C=p[now];
}
}
}
int main()
{
int N; ll S;
scanf("%d%I64d",&N,&S);
for(int i=;i<=N;i++) scanf("%I64d%I64d",&a[i].x,&a[i].y);
int top; convexhull(N,top);
RC(ch,top-);
printf("%I64d %I64d\n",A.x+B.x-C.x,A.y+B.y-C.y);
printf("%I64d %I64d\n",A.x+C.x-B.x,A.y+C.y-B.y);
printf("%I64d %I64d\n",B.x+C.x-A.x,B.y+C.y-A.y);
return ;
}
CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)的更多相关文章
- POJ 2079 Triangle 旋转卡壳求最大三角形
求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...
- CodeForces 682E Alyona and Triangles (计算几何)
Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
- UVa 1453 - Squares 旋转卡壳求凸包直径
旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖
旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...
- POJ2187 旋转卡壳 求最长直径
给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...
- 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)
题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...
- bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...
随机推荐
- 软件工作考核项(zcl)——
注意:这里没有对代码风格做要求,因为要代码走查! 考核项 考核标准 分数等级 需求规格说明书编写 主要用例图缺失 -1 主要软件界面设计图缺失 -1 主要功能清单项目缺失 -1 主要复 ...
- classmethod
描述 classmethod 修饰符对应的函数不需要实例化,不需要 self 参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等. 语法 classmeth ...
- Oracle网络服务管理与配置
一.Oracle网络服务概述 1.网络解决方案. (1)可连接性:在Oracle中,由Oracle net组件负责在客户端应用程序与数据服务器之间创建会话.维护会话连接和数据传输. (2)可管理性: ...
- Java智能图表类库JChartLib使用介绍
http://www.codeceo.com/article/java-jchartlib.html JChartLib是一款基于Java的智能图表类库,JChartLib不仅有着漂亮的外观,而且支持 ...
- Qt事件机制---信号通过事件实现,事件可以过滤,事件更底层,事件是基础,信号是扩展。
转:http://www.cnblogs.com/findumars/p/8001484.html Qt事件机制(是动作发生后,一种通知对象的消息,是被动与主动的总和.先处理自己队列中的消息,然后再处 ...
- java利用反射将pojo转为json对象
最近做以太坊钱包项目需要与前台进行json交互,写一个工具类,经普通javaBean转为json对象 package util; import java.lang.reflect.Field; imp ...
- scp 和 pscp
今天在做项目遇到了两个问题,做一些总结. 1.在项目中,防火墙的的相关配置是关于cisco企业级防火墙的配置,并不是window防火墙. 2. 在Linux上, scp linux文件 ...
- POJO、Bean和JavaBean
本文总结自: https://blog.csdn.net/chenchunlin526/article/details/69939337 POJO (plain pld java object) 一个 ...
- PHP面试题 – 培训学校真实面试内部资料
1.PHP解析URL是哪个函数? parse_url() 是讲URL解析成有固定键值的数组的函数. $ua=parse_url('http://username:password@hostname/p ...
- MYSQL数据库字段命名及设计规范
1.设计原则 1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余.标准化有好几种形式,但 Third Normal Form(3NF)通常被认为在性能.扩展性和数据完整性方面达到了最好平衡. ...