题意

你有一个森林,你需要支持两个操作

  • 查询两个结点路径上权值第\(k\)小
  • 两个点之间连一条边

强制在线,结点数\(\leq 8\times 10^4\)

题解

如果可以离线,这就是一个主席树板子题,每个点开一个主席树表示树上的前缀和。询问的时候拿出来\(4\)棵主席树,\(x,y,lca(x,y)\)和\(fa(lca(x,y))\),然后每次用\(x,y\)的信息减去\(lca(x,y),fa(lca(x,y))\)的信息就能得到这条链的信息

这里要求在线,可以考虑启发式合并,比如连接\(x,y\),若\(y\)连通块比较小,就把\(y\)的那个连通块连做\(x\)的儿子,显然这样\(y\)的连通块父子关系会改变,需要重新dfs求倍增数组和主席树。启发式合并\(O(n \log n)\),主席树带一个\(\log\),复杂度应该就是\(O(n \log^2n)\)

注意一下主席树不要反复新建结点,一个结点建过了第二次再建直接把它原来的信息覆盖了就行。这样空间复杂度就是\(O(n\log n)\)了qwq

#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std; const int N = 8e4 + 10; int n, m, q, p, l;
int a[N], b[N], f[N][20], sz[N], d[N];
int id, T[N], ls[N * 20], rs[N * 20], s[N * 20];
vector<int> G[N]; void build(int &rt, int l, int r) {
rt = ++ id; s[rt] = 0;
if(l < r) {
int mid = (l + r) >> 1;
build(ls[rt], l, mid);
build(rs[rt], mid + 1, r);;
}
} void update(int &rt, int pre, int l, int r, int x) {
if(!rt) rt = ++ id; s[rt] = s[pre] + 1;
if(l == r) return ;
int mid = (l + r) >> 1;
if(x <= mid) rs[rt] = rs[pre], update(ls[rt], ls[pre], l, mid, x);
else ls[rt] = ls[pre], update(rs[rt], rs[pre], mid + 1, r, x);
} int query(int u, int v, int x, int y, int l, int r, int k) {
if(l == r) return l;
int sum = s[ls[u]] + s[ls[v]] - s[ls[x]] - s[ls[y]];
int mid = (l + r) >> 1;
if(k <= sum) return query(ls[u], ls[v], ls[x], ls[y], l, mid, k);
return query(rs[u], rs[v], rs[x], rs[y], mid + 1, r, k - sum);
} void dfs(int u, int fa = 0) {
f[u][0] = fa; sz[u] = 1; d[u] = d[fa] + 1;
for(int i = 1; i <= l; i ++)
f[u][i] = f[f[u][i - 1]][i - 1];
update(T[u], T[fa], 1, p, a[u]);
for(int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if(v != fa) {
dfs(v, u); sz[u] += sz[v];
}
}
} int find(int u) {
for(int i = l; i >= 0; i --)
if(f[u][i]) u = f[u][i];
return u;
} int lca(int u, int v) {
if(d[u] < d[v]) swap(u, v);
int x = d[u] - d[v];
for(int i = l; i >= 0; i --)
if(x >> i & 1) u = f[u][i];
if(u == v) return u;
for(int i = l; i >= 0; i --)
if(f[u][i] != f[v][i]) {
u = f[u][i]; v = f[v][i];
}
return f[u][0];
} int main() {
scanf("%*d%d%d%d", &n, &m, &q);
for(l = 1; (1 << l) <= n; l ++) ;
for(int i = 1; i <= n; i ++) {
scanf("%d", a + i); b[i] = a[i];
}
sort(b + 1, b + n + 1);
p = unique(b + 1, b + n + 1) - b - 1;
for(int i = 1; i <= n; i ++)
a[i] = lower_bound(b + 1, b + p + 1, a[i]) - b;
int u, v, k;
for(int i = 1; i <= m; i ++) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
build(T[0], 1, p);
for(int i = 1; i <= n; i ++)
if(!sz[i]) dfs(i);
char op[4];
for(int la = 0, i = 1; i <= q; i ++) {
scanf("%s%d%d", op, &u, &v);
u ^= la; v ^= la;
if(* op == 'Q') {
scanf("%d", &k); k ^= la;
int t = lca(u, v);
k = query(T[u], T[v], T[t], T[f[t][0]], 1, p, k);
printf("%d\n", la = b[k]);
}
if(* op == 'L') {
G[u].push_back(v);
G[v].push_back(u);
int x = find(u), y = find(v);
if(sz[x] < sz[y]) {
swap(u, v); swap(x, y);
}
dfs(v, u); sz[x] += sz[v];
}
}
return 0;
}

「BZOJ 3123」「SDOI 2013」森林「启发式合并」的更多相关文章

  1. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

  2. [BZOJ 4668]冷战(带边权并查集+启发式合并)

    [BZOJ 4668]冷战(并查集+启发式合并) 题面 一开始有n个点,动态加边,同时查询u,v最早什么时候联通.强制在线 分析 用并查集维护连通性,每个点x还要另外记录tim[x],表示x什么时间与 ...

  3. 「BZOJ 2809」「APIO 2012」Dispatching「启发式合并」

    题意 给定一个\(1\)为根的树,每个点有\(c,w\)两个属性,你需要从某个点\(u\)子树里选择\(k\)个点,满足选出来的点\(\sum_{i=1}^k w(i)\leq m\),最大化\(k\ ...

  4. 「BZOJ 2733」「HNOI 2012」永无乡「启发式合并」

    题意 你需要维护若干连通快,有两个操作 合并\(x,y\)所在的连通块 询问\(x\)所在连通块中权值从小到大排第\(k\)的结点编号 题解 可以启发式合并\(splay\),感觉比较好些的 一个连通 ...

  5. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  6. ☆ [HNOI2012] 永无乡 「平衡树启发式合并」

    题目类型:平衡树启发式合并 传送门:>Here< 题意:节点可以连边(不能断边),询问任意两个节点的连通性与一个连通块中排名第\(k\)的节点 解题思路 如果不需要询问排名,那么并查集即可 ...

  7. [BZOJ 1483][HNOI 2009]梦幻补丁(有序表启发式合并)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1483 分析: 先将不同的颜色的出现位置从小到大用几条链表串起来,然后统计一下答案 对于 ...

  8. ●BZOJ 3123 [Sdoi2013]森林

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3123 题解: 主席树,在线,启发式合并 简单版(只有询问操作):[2588: Spoj 10 ...

  9. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

随机推荐

  1. MFC学习(四) 消息机制

    1 消息机制的要点: 消息队列:先进先出 消息循环:通过循环while,不断的从消息队列中取得队首消息,并分发消息. 消息处理:根据不同的消息类型做不同的处理 事件:事件响应函数 2 消息机制 _tW ...

  2. Python Twisted系列教程15:测试诗歌

    作者:dave@http://krondo.com/tested-poetry/  译者: Cheng Luo 你可以从”第一部分 Twist理论基础“开始阅读:也可以从”Twisted 入门!“浏览 ...

  3. 1.1.Task Queue

      任务队列是一种跨线程.跨机器工作的一种机制.   任务队列中包含称作任务的工作单元.有专门的工作进程持续不断的监视任务队列,并从中获得新的任务并处理.   celery通过消息进行通信,通常使用一 ...

  4. sys模块和shutil模块

    一.sys模块 常用方法有: #!/usr/bin/env python3 #-*- coding:utf-8 -*- # write by congcong import sys # 命令行参数Li ...

  5. webmagic使用

    webmagic是Java语言用于爬虫的工具.官网地址:http://webmagic.io/,中文文档地址:http://webmagic.io/docs/zh/ 使用webmagic有3种配置需要 ...

  6. java Web 请求servlet绘制验证码简单例子

    主要用来了解java代码怎么绘制验证码图片,实际开发中不会这样用 protected void doGet(HttpServletRequest request, HttpServletRespons ...

  7. 基于Nginx实现集群原理

    1)安装Nginx 2)配置多个Tomcat,并修改端口号(两个端口号不一样即可) 3)在Nginx的Nginx.conf添加如下配置:

  8. openpyxl模块处理excel文件

    python模块之——openpyxl 处理xlsx/ xlsm文件 项目原因需要编辑excel文件,经过查询,最先尝试xlwt .wlrd这个两个模块,但是很快发现这两个模块只能编辑xls文件,然而 ...

  9. MCMC 破译密码 http://mlwhiz.com/blog/2015/08/21/MCMC_Algorithms_Cryptography/

    # AIM: To Decrypt a text using MCMC approach. i.e. find decryption key which we will call cipher fro ...

  10. 264E Roadside Trees

    传送门 题目大意 分析 倒着跑LIS表示以i为开头的LIS,于是对于删除可以暴力重算前10棵树.而对于种树,因为高度不超过10且高度两两不同,所以暴力重算比它矮的10棵树即可.对于需要重算的点,将其从 ...