[洛谷P3935]Calculating
题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\sum\limits_{i=l}^r f(i)(1\leqslant l\leqslant 10^{14},1\leqslant r\leqslant 1.6\times10^{14},r-l>10^{14}$
题解:可知$f(x)$为$x$的因数个数,可以把$\sum\limits_{i=l}^rf(i)$拆成$\sum\limits_{i=1}^rf(i)-\sum\limits_{i=1}^lf(i)$。
$$
\def\dsum{\displaystyle\sum\limits}
\def\dprod{\displaystyle\prod\limits}
\begin{align*}
f(p)&=\dprod_{i=1}^n(k_{p,i}+1)\\
&=\dsum_{i=1}^n[i|p]\\
\end{align*}\\
带回原式
$$
$$
\def\dsum{\displaystyle\sum\limits}
\def\dprod{\displaystyle\prod\limits}
\begin{align*}
令g(p)&=\dsum_{x=1}^pf(x)\\
&=\dsum_{x=1}^p\dsum_{i=1}^x[i|x]\\
&=\dsum_{i=1}^p\big\lfloor\dfrac p i\big\rfloor\\
\end{align*}
$$
整除分块即可。
卡点:1.读入时忘记开$long\;long$
C++ Code:
#include <cstdio>
using namespace std;
const int mod = 998244353;
long long l, r;
long long solve(long long n) {
long long ans = 0, l, r;
for (l = 1; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + (r - (l - 1)) * (n / l)) % mod;
}
return ans;
}
int main() {
scanf("%lld%lld", &l, &r);
printf("%lld\n", (solve(r) - solve(l - 1) + mod) % mod);
return 0;
}
[洛谷P3935]Calculating的更多相关文章
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 洛谷P3935 Calculating (莫比乌斯反演)
P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- 洛谷 P3935 Calculating
虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...
- 洛谷 P3935 Calculating 题解
原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...
- [洛谷3935]Calculating
题目链接:https://www.luogu.org/problemnew/show/P3935 首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf ...
- 洛谷P3935 Calculation [数论分块]
题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
随机推荐
- Java写Excel(不生成实体文件,写为流的形式)
java 写 Excel(不生成实体文件,写为流的形式) public String exportReportExcel(String mediaCode, List<SimpleMediaRe ...
- JavaScript : CORS和Ajax请求
CORS(Cross-Origin Resource Sharing, 跨源资源共享)是W3C出的一个标准,其思想是使用自定义的HTTP头部让浏览器与服务器进行沟通,从而决定请求或响应是应该成功,还是 ...
- java初级应用:环境安装及配置
相关文件下载: jdk下载路径:http://www.oracle.com/technetwork/java/javase/downloads/index.html eclipse下载路径:https ...
- ruby $LOAD_PATH及类加载
$LOAD_PATH $LOAD_PATH 指的是Ruby读取外部文件的一个环境变量,其实和windows的环境变量是一个概念.Ruby会在这个环境变量的路径中读取需要require的文件,如果在环境 ...
- Leecode刷题之旅-C语言/python-26.移除元素
/* * @lc app=leetcode.cn id=27 lang=c * * [27] 移除元素 * * https://leetcode-cn.com/problems/remove-elem ...
- Linux命令备忘录:mount用于加载文件系统到指定的加载点
mount命令用于加载文件系统到指定的加载点.此命令的最常用于挂载cdrom,使我们可以访问cdrom中的数据,因为你将光盘插入cdrom中,Linux并不会自动挂载,必须使用Linux mount命 ...
- Kubernetes-深入分析集群安全机制(3.6)
集群的安全性主要考虑以下几个方面: 容器与所在宿主机的隔离: 限制容器给基础设施及其他容器带来消极影响的能力: 最小权限原则--合理限制所有组件的权限,确保组件只执行它被授权的行为,通过限制单个组件的 ...
- poj_2339
参考:https://blog.csdn.net/yzl_rex/article/details/7600906 https://blog.csdn.net/acm_JL/article/detail ...
- UVA - 12230
#include <bits/stdc++.h> using namespace std; int n; double d; double p,l,v,ret,sum; ; /* 村庄A, ...
- CSS3实现3d菜单翻转
transform-style:flat | preserve-3d: 3d透视属性.针对子元素如何在3d空间相对其父元素渲染,这个属性声明在父元素上,并且他的子元素使用了transform才会有效. ...