MySQL索引结构--由 B-/B+树看
B-树
B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.
B-树有如下特点:
所有键值分布在整颗树中;
任何一个关键字出现且只出现在一个结点中;
搜索有可能在非叶子结点结束;
在关键字全集内做一次查找,性能逼近二分查找;
B+ 树
B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:
所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)
为所有叶子结点增加了一个链指针
简化 B+树 如下图
为什么使用B-/B+ Tree
红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构。MySQL 是基于磁盘的数据库系统,索引往往以索引文件的形式存储的磁盘上,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。为什么使用B-/+Tree,还跟磁盘存取原理有关。
局部性原理与磁盘预读
由于磁盘的存取速度与内存之间鸿沟,为了提高效率,要尽量减少磁盘I/O.磁盘往往不是严格按需读取,而是每次都会预读,磁盘读取完需要的数据,会顺序向后读一定长度的数据放入内存。而这样做的理论依据是计算机科学中著名的局部性原理:
当一个数据被用到时,其附近的数据也通常会马上被使用
程序运行期间所需要的数据通常比较集中
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率.预读的长度一般为页(page)的整倍数。
MySQL(默认使用InnoDB引擎),将记录按照页的方式进行管理,每页大小默认为16K(这个值可以修改).linux 默认页大小为4K
B-/+Tree索引的性能分析
实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个结点只需一次I/O。
假设 B-Tree 的高度为 h,B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。
为什么使用 B+树
B+树更适合外部存储,由于内节点无 data 域,一个结点可以存储更多的内结点,每个节点能索引的范围更大更精确,也意味着 B+树单次磁盘IO的信息量大于B-树,I/O效率更高。
Mysql是一种关系型数据库,区间访问是常见的一种情况,B+树叶节点增加的链指针,加强了区间访问性,可使用在范围区间查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。
MySQL索引结构--由 B-/B+树看的更多相关文章
- mysql系列十、mysql索引结构的实现B+树/B-树原理
一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的 ...
- MySQL索引结构之B+树索引(面)
首先要明白索引(index)是在存储引擎(storage engine)层面实现的,而不是server层面.不是所有的存储引擎都支持所有的索引类型.即使多个存储引擎支持某一索引类型,它们的实现和行为也 ...
- B-/B+树 MySQL索引结构
索引 索引的简介 简单来说,索引是一种数据结构 其目的在于提高查询效率 可以简单理解为“排好序的快速查找结构” 一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在中磁 ...
- MYSQL索引结构原理、性能分析与优化
[转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...
- 【转】由浅入深探究mysql索引结构原理、性能分析与优化
摘要: 第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1.简单介绍B-tree B+ tree树 2.MyisAM索引结构 3.Annode索引结构 4.MyisAM索引与Inno ...
- MySQL索引的原理,B+树、聚集索引和二级索引
MySQL索引的原理,B+树.聚集索引和二级索引的结构分析 一.索引类型 1.1 B树 1.2 B+树 1.3 哈希索引 1.4 聚集索引(clusterd index) 1.5 二级索引(secon ...
- 一天五道Java面试题----第七天(mysql索引结构,各自的优劣--------->事务的基本特性和隔离级别)
这里是参考B站上的大佬做的面试题笔记.大家也可以去看视频讲解!!! 文章目录 1 .mysql索引结构,各自的优劣 2 .索引的设计原则 3 .mysql锁的类型有哪些 4 .mysql执行计划怎么看 ...
- 数据库为什么要用B+树结构--MySQL索引结构的实现(转)
B+树在数据库中的应用 { 为什么使用B+树?言简意赅,就是因为: 1.文件很大,不可能全部存储在内存中,故要存储到磁盘上 2.索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数(为什么使用B-/ ...
- MySQL索引(二)B+树在磁盘中的存储
MySQL索引(二)B+树在磁盘中的存储 回顾  上一篇文章<MySQL索引为什么要用B+树>讲了MySQL为什么选择用B+树来作为底层存储结构,提了两个知识点: B+树索引并不能直接找 ...
- MySQL 索引结构 hash 有序数组
MySQL 索引结构 hash 有序数组 除了最常见的树形索引结构,Hash索引也有它的独到之处. Hash算法 Hash本身是一种函数,又被称为散列函数. 它的思路很简单:将key放在数组里,用 ...
随机推荐
- 《Windows IoT 应用开发指南》
物物互联的时代已经到来,智能家居.智慧校园.智慧交通.可穿戴.无人机.全息投影,各种各样的新名词.黑科技层出不穷.当我们为五年前能够通过手机控制家电而欣喜若狂的时候,可曾憧憬过当前使用增强现实设备完成 ...
- EntityFramework简介
EntityFramework是什么? 1.是对ADO.NET 更高封装的ORM (对象关系映射)框架,跟Nhibernate类似 2.用面向对象的方式来操作关系数据库 3.目标: 提高开发效率,减轻 ...
- SQL SERVER 2012/2014 链接到 SQL SERVER 2000的各种坑
本文总结一下SQL SERVER 2012/2014链接到SQL SERVER 2000的各种坑,都是在实际应用中遇到的疑难杂症.可能会有人说怎么还在用SQL SERVER 2000,为什么不升级呢? ...
- (转载)SQL Reporting Services (Expression Examples)
https://msdn.microsoft.com/en-us/library/ms157328(v=SQL.100).aspx Expressions are used frequently in ...
- .NET应用架构设计—面向对象分析与设计四色原型模式(彩色建模、领域无关模型)(概念版)
阅读目录: 1.背景介绍 2.问自己,UML对你来说有意义吗?它帮助过你对系统进行分析.建模吗? 3.一直以来其实我们被一个缝隙隔开了,使我们对OOAD遥不可及 4.四色原型模式填补这个历史缝隙,让我 ...
- 从零自学Hadoop(13):Hadoop命令下
阅读目录 序 MapReduce Commands User Commands Administration Commands YARN Commands User Commands Administ ...
- Windows批处理:配置防火墙规则、开启远程桌面
一.简介 公司主机加入域后,防火墙未进行设置,规则不统一,不少主机ping不通.另打算开启远程桌面,方便远程管理网内每台主机.曾在DC上测试过域组策略内的Windows防火墙设置,无论是新增规则还是直 ...
- 【转】How to hire——创业公司应该如何招人
How to hire After startups raise money, their next biggest problem becomes hiring. It turns out it’ ...
- ::before和::after伪元素的用法
一.介绍 css3为了区分伪类和伪元素,伪元素采用双冒号写法. 常见伪类——:hover,:link,:active,:target,:not(),:focus. 常见伪元素——::first-let ...
- 固态硬盘与机械硬盘 SQL Server 单表插入性能对比测试
测试环境