link。

容易发现,如果将 \(x\) 写作 \(\displaystyle \prod_{i = 1}^k p_i^{\alpha_i}\) 的形式,\(\displaystyle J(x) = 1+\sum p_i^{\alpha_i}+\sum\sum p_i^{\alpha_i}p_j^{\alpha_j}+\dots = \sum_{T \in 2^S} \sum_{i \in T} p_i^{\alpha_i}\),其中 \(S = \{1, \dots, k\}\)。写到这里可以发现 Joker function 是个 multiplicative function,所以 Joker function 又可以写作 \(\displaystyle J(x) = \prod_{i = 1}^k J(p_i^{\alpha_i}) = \prod_{i = 1}^k \left(p_i^{\alpha_i}+1\right)\)。

考虑 dp,设 \(f[i][j]\) 表示用前 \(i\) 个因数通过上述形式凑出 \(j\) 的方案数,转移很平凡,具体看代码。这个 dp 可以用数据结构来存。这个 dp 复杂度的保证在于 \(\displaystyle \max_{i \in [1, 10^{12}]} {\sigma_0(i)} = 6720\),这就叫人比较无语。至于判断一个数是否是 \(p^k+1\) 的形式,可以根号分治来做,记阈值为 \(T = 10^6\),对于 \(\leqslant T\) 的元素,可以线性筛出所有质数,标记所有质数的次幂,数量级粗略是 \(O(T\log T)\),完全跑不满;对于 \(> T\) 的元素,因为 \((T+1)^2 > 10^{12}\),所以只需要判断是否为质数即可,Miller Rabin 或者其他 nb 的判素数方法即可。写不来 MR 所以直接蒯了个 mrsrz 的。

namespace Miller_Rabin{
const int P[]={2,3,7,97,19260817};
inline LL mul(LL a,LL b,const LL&md){
LL tmp=a*b-(LL)((long double)a*b/md+.5)*md;
return tmp+(tmp>>63&md);
}
inline LL pow(LL a,LL b,const LL&md){
LL ret=1;
for(;b;b>>=1,a=mul(a,a,md))if(b&1)ret=mul(ret,a,md);
return ret;
}
bool test(LL a,LL p){
LL x=p-1;
int d=0;
while(!(x&1))++d,x>>=1;
LL t=pow(a,x,p);
while(d--){
const LL ls=t;
t=mul(t,t,p);
if(t==1&&ls!=1&&ls!=p-1)return 0;
}
return t==1;
}
bool check(LL n){
if(n<2)return 0;
if(n==2||n==3||n==7||n==97||n==P[4])return 1;
for(int i=0;i<5;++i)if(n%P[i]==0)return 0;
for(int i=0;i<5;++i)
if(!test(P[i]%n,n))return 0;
return 1;
}
}
using Miller_Rabin::check;
LL A;
bitset<1000100> tag;
int prm[1000100], cnt;
map<LL, int> mp; // a in it iff a = p^k
bastr<LL> offset[2000100];
void sieve(int n) {
for (int i=2; i<=n; ++i) {
if (!tag.test(i)) {
prm[++cnt] = i;
}
for (int j=1; j<=cnt && i<=n/prm[j]; ++j) {
tag.set(i*prm[j]);
if (i%prm[j] == 0) {
break;
}
}
}
for (int i=1; i<=cnt; ++i) {
for (LL j=prm[i]; j<=1e12; j*=prm[i]) {
mp[j] = i;
}
}
}
void executer() {
cin >> A;
map<LL, LL> dp[2];
bastr<int> eff;
for (LL i=1; i<=A/i; ++i) {
if (A%i == 0) {
if (mp.count(i-1)) {
offset[mp[i-1]] += i;
eff += mp[i-1];
}
if (i*i != A) {
if (mp.count(A/i-1)) {
offset[mp[A/i-1]] += A/i;
eff += mp[A/i-1];
}
else if (check(A/i-1)) {
offset[++cnt] += A/i;
eff += cnt;
}
}
}
}
sort(eff.begin(), eff.end());
eff.erase(unique(eff.begin(), eff.end()), eff.end());
dp[0][1] = 1;
int cur = 1;
for (auto u : eff) {
dp[cur] = dp[cur^1];
for (auto v : dp[cur^1]) {
for (auto p : offset[u]) {
if (A/p >= v.first && A%(v.first*p) == 0) {
dp[cur][v.first*p] += v.second;
}
}
}
cur ^= 1;
}
cout << dp[cs(eff)&1][A] << "\n";
}

「codeforces - 542D」Superhero's Job的更多相关文章

  1. 「CodeForces 581D」Three Logos

    BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...

  2. 「CodeForces - 50C 」Happy Farm 5 (几何)

    BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...

  3. 「CodeForces - 598B」Queries on a String

    BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...

  4. 「CodeForces - 717E」Paint it really, really dark gray (dfs)

    BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...

  5. 「CodeForces 476A」Dreamoon and Stairs

    Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...

  6. 「CodeForces 546B」Soldier and Badges 解题报告

    CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...

  7. 「Codeforces 79D」Password

    Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...

  8. 「Codeforces 468C」Hack it!

    Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...

  9. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  10. 「codeforces - 1284G」Seollal

    给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...

随机推荐

  1. 2023最新IntellJ IDEA诺依SpringCloud开发部署文档(保姆级别)

    目录 若依RuoYi v3.6.2部署文档 一.环境构建 二.模块描述 三.部署后端 1.下载到本地. 2.MySQL导入数据. 3.Nacos修改 (1)保证本地Nacos下载安装成功,修改本地Na ...

  2. 一篇文章带你入门HBase

    本文已收录至Github,推荐阅读 Java随想录 微信公众号:Java随想录 目录 HBase特性 Hadoop的限制 基本概念 NameSpace Table RowKey Column Time ...

  3. Gazebo、Rviz 结合 ORB-SLAM3 实现运动规划及定位

    博客地址:https://www.cnblogs.com/zylyehuo/ 基于以下内容,详见博客链接 基于机器人自主移动实现SLAM建图 - zylyehuo - 博客园 (cnblogs.com ...

  4. 1.7 完善自定位ShellCode后门

    在之前的文章中,我们实现了一个正向的匿名管道ShellCode后门,为了保证文章的简洁易懂并没有增加针对调用函数的动态定位功能,此类方法在更换系统后则由于地址变化导致我们的后门无法正常使用,接下来将实 ...

  5. Unity iOS Guideline 1.3 - Safety - Kids Category 被拒

    解决办法: 不使用unity 的分析SDK //关闭unity信息收集服务 UnityEngine.Analytics.Analytics.enabled = false; UnityEngine.A ...

  6. 记一次 .NET 在线客服系统同时支持 SQL Server 和 MySQL 没卡死分析

    前段时间我发表了一系列文章,开始介绍基于 .net core 的在线客服系统开发过程. 有很多朋友一直提出希望能够支持 MySQL 数据库,考虑到已经有朋友在用 SQL Server,我在升级的过程中 ...

  7. TiDB简述及TiKV的数据结构与存储

    1 概述 TiDB 是 PingCAP 公司自主设计.研发的开源分布式关系型数据库,是一款同时支持在线事务处理与在线分析处理 (Hybrid Transactional and Analytical ...

  8. 【Java 新的选择】,Solon v2.3.8 发布

    Solon 是什么开源项目? 一个,Java 新的生态型应用开发框架.它从零开始构建,有自己的标准规范与开放生态(历时五年,已有全球第二级别的生态规模).与其他框架相比,它解决了两个重要的痛点:启动慢 ...

  9. Tauri-Admin通用后台管理系统|tauri+vue3+pinia桌面端后台EXE

    基于tauri+vite4+pinia2跨端后台管理系统应用实例TauriAdmin. tauri-admin 基于最新跨端技术 Tauri Rust webview2 整合 Vite4 构建桌面端通 ...

  10. 【转载】Linux虚拟化KVM-Qemu分析(七)之timer虚拟化

    原文信息 作者:LoyenWang 出处:https://www.cnblogs.com/LoyenWang/ 公众号:LoyenWang 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者 ...