面积图,或称区域图,是一种随有序变量的变化,反映数值变化的统计图表。

面积图也可用于多个系列数据的比较。
这时,面积图的外观看上去类似层叠的山脉,在错落有致的外形下表达数据的总量和趋势。
面积图不仅可以清晰地反映出数据的趋势变化,也能够强调不同类别的数据间的差距对比。

面积图的特点在于,折线与自变量坐标轴之间的区域,会由颜色或者纹理填充。
但它的劣势在于,填充会让形状互相遮盖,反而看不清变化。一种解决方法,是使用有透明度的颜色,来“让”出覆盖区域。

1. 主要元素

面积图是一种用于展示数据分布或密度的图表类型,主要由数据点、面积、以及X轴和Y轴组成。
面积图可以直观地反映数据的分布情况。

面积图的主要构成元素包括:

  1. 数据点:表示数据的具体位置和大小
  2. 面积:表示数据的分布或密度
  3. X轴:一般是有序变量,表示数据点的变化区间
  4. Y轴:数据点在不同时刻的值

2. 适用的场景

面积图适用于以下分析场景:

  • 数据分布分析:帮助分析人员了解数据的分布情况,如城市的大小、人口分布等。
  • 市场需求分析:帮助企业了解市场需求的变化趋势,如销售额的增长情况等。
  • 健康状况分析:帮助医生了解患者的健康状况,如体温、血压等数据的变化趋势。

3. 不适用的场景

面积图不适用于以下分析场景:

  • 数据的精确性要求较高的分析场景:面积图无法精确地反映数据的分布情况,在需要精确数据的场景中不适用。
  • 需要显示数据细节的分析场景:面积图无法直观地显示数据的细节和变化趋势,在需要显示数据细节的场景中不适用。
  • 需要进行多维数据分析的场景:面积图无法直接展示多维数据,在需要进行多维数据分析的场景中不适用。

4. 分析实战

这次使用国内生产总值相关数据来实战面积图的分析。

4.1. 数据来源

数据来源国家统计局公开数据,已经整理好的csv文件在:https://databook.top/nation/A02

本次分析使用其中的 A0201.csv 文件(国内生产总值数据)。

下面的文件路径 fp 要换成自己实际的文件路径。

fp = "d:/share/A0201.csv"

df = pd.read_csv(fp)
df

4.2. 数据清理

从中过滤出国内生产总值(亿元)人均国内生产总值(元),然后绘制面积图看看有什么发现。

key1 = "国民总收入(亿元)"
df[df["zbCN"]==key1].head()

key2 = "人均国内生产总值(元)"
df[df["zbCN"]==key2].head()

4.3. 分析结果可视化

国内生产总值(亿元)的面积图:

from matplotlib.ticker import MultipleLocator

with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.xaxis.set_minor_locator(MultipleLocator(2)) data = df[df["zbCN"] == key1].copy()
data["value"] = data["value"] / 10000
data = data.sort_values(by="sj")
ax.fill_between(data["sjCN"], data["value"], label="国民总收入(万亿元)") ax.legend(loc="upper left")

上面的代码把Y轴的单位改成了万亿元,原先的亿元作为单位,数值太大。
面积图来展示分析结果,不像折线图那样,仅仅只是变化趋势的感觉;
通过折线下的面积不断扩大,会感觉到国民总收入的总量在不断变大,且2006年之后,总量增速明显提高。

同样分析步骤,人均收入的面积图如下:

from matplotlib.ticker import MultipleLocator

with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.xaxis.set_minor_locator(MultipleLocator(2)) data = df[df["zbCN"] == key2].copy()
data = data.sort_values(by="sj")
ax.fill_between(data["sjCN"], data["value"], label=key2) ax.legend(loc="upper left")

接下来,我们把国民总收入人均收入放在一起看,但是,这两组数据的单位不一样(一个是万亿元,一个是元)。
所以要用到之前 matplotlib基础系列中介绍的双坐标轴技巧来展示。

from matplotlib.ticker import MultipleLocator

with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.xaxis.set_minor_locator(MultipleLocator(2))
ax_twinx = ax.twinx() data = df[df["zbCN"] == key1].copy()
data["value"] = data["value"] / 10000
data = data.sort_values(by="sj")
ax.fill_between(data["sjCN"], data["value"],
alpha=0.5, label="国民总收入(万亿元)") data = df[df["zbCN"] == key2].copy()
data = data.sort_values(by="sj")
ax_twinx.fill_between(data["sjCN"], data["value"],
color='r', alpha=0.2, label=key2) ax.legend(loc="upper left")
ax_twinx.legend(loc="upper right")

两个面积图用了不同颜色,并加了透明度(即alpha 参数),不加透明度,颜色会互相覆盖。
左边的Y轴是国民总收入右边的Y轴是人均收入
这两个面积图几乎完全重合,正说明了国民总收入人均收入是强相关的。

【matplotlib 实战】--面积图的更多相关文章

  1. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  2. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

  3. 数据可视化实例(十四):面积图 (matplotlib,pandas)

    偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...

  4. matplotlib柱状图、面积图、直方图、散点图、极坐标图、箱型图

    一.柱状图 1.通过obj.plot() 柱状图用bar表示,可通过obj.plot(kind='bar')或者obj.plot.bar()生成:在柱状图中添加参数stacked=True,会形成堆叠 ...

  5. Python交互图表可视化Bokeh:4. 折线图| 面积图

    折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...

  6. Python绘制面积图

    一.Python绘制面积图对应代码如下图所示 import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans ...

  7. python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)

    最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...

  8. javascript曲线图和面积图Line & Area chart控件功能及下载

    Line & Area chart 控件是一款新型的.可用性极强的曲线图和面积图产品.一个您网站的访问者可以放大他感兴趣的一段区域,打开和关闭数值气球,并可显示和隐藏图表.您能创建简单.堆积. ...

  9. 第四篇:R语言数据可视化之折线图、堆积图、堆积面积图

    折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先 ...

  10. arcpy.mapping实战-专题图制图自动化

    arcpy.mapping实战-专题图制图自动化 by 李远祥 最初对arcpy.mapping感兴趣是因为一次大规模的专题地图调整的需要,由于某某单位利用ArcEngine编写的专题图出图系统,出现 ...

随机推荐

  1. 使用 Easysearch 还原 Elasticsearch 快照数据

    本文主要验证 Elasticsearch 快照在 Easysearch 中进行数据恢复. 准备测试数据 索引 别名 模版 生命周期策略 创建快照 PUT /_snapshot/my_backup { ...

  2. String和new String的那点事

    String a= "test"; 此语句含义是:在常量池中创建test字符串对象,变量aa是对常量池中此对象的引用 String aa = new String("te ...

  3. Flutter状态管理新的实践

    1 背景介绍 1.1 声明式ui 声明式UI其实并不是近几年的新技术,但是近几年声明式UI框架非常的火热.单说移动端,跨平台方案有:RN.Flutter.iOS原生有:SwiftUI.android原 ...

  4. ARC114F Permutation Division

    题意 给定一个 \(1 \sim N\) 的排列,Alice 把它划分成 \(k\) 段,Bob 把这 \(k\) 段任意排列.Alice 想让字典序最小,Bob 想让字典序最大.请问最后的排列. 数 ...

  5. uniapp微信小程序转支付宝小程序踩坑(持续更新)

    首先第一个,真有被折磨到! // 微信正常使用,支付宝不行 <image src="https://static.dabapiao.com/images/coupon-index.pn ...

  6. Mybatis-plus自定义Sql注入器

    最近在学习mybatis-plus,知道了在mp中通过AbstractSqlInjector将BaseMapper中的方法注入到了Mybatis容器,这样这些方法才可以正常执行. 下面是一个关系图 那 ...

  7. GGTalk 开源即时通讯系统源码剖析之:数据库设计

    自从<开源即时通讯GGTalk 8.0发布,增加Linux客户端,支持在统信UOS.银河麒麟上运行!>一文在博客园发布后,有园友联系我QQ,说能不能整理个更系统更详细地介绍GGTalk源码 ...

  8. 行行AI人才沙龙第1期:《AI大模型创业投资,哪里才是真风口?》

    行行AI人才是博客园和顺顺智慧共同运营的AI行业人才全生命周期服务平台. 要说近期科技圈和投资圈"最靓的崽",那自然非"AI大模型"莫属.自ChatGPT发布以 ...

  9. Python 学习路线图

    Python 学习路线图 在这个系列笔记中,我将陆续整理自己在学习 Python 编程语言及其框架的过程中留下的笔记和代码,目的是掌握如何在生产环境中利用各种领域的第三方框架来快速开发应用程序.和大多 ...

  10. 即构携手智能对讲机品牌Runbo,打造可视化对讲通信系统

    现代通信技术的发展,让信息的传递变得前所未有的便捷.作为双向移动通信工具,对讲机不需要网络支持就可以进行通话,且没有话费产生,尤其适合酒店.物业等使用区域固定.通话频繁的场景. 随着技术的不断迭代,对 ...