http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接)

题意

  给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个。

Solution

$${ans=平面中选三个点的方案数-三点共线的方案数}$$

$${ans=C_{(n+1)*(m+1)}^{3}-(n+1)*C_{m+1}^{3}-(m+1)*C_{n+1}^{3}-斜的三点共线的方案数}$$

  斜的三点共线方案数不会求。。左转题解:http://blog.csdn.net/zhb1997/article/details/38474795

细节

  LL

代码

// bzoj3505
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 10000000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; int n,m;
LL c[2000010][4]; int gcd(int a,int b) {
return b==0 ? a : gcd(b,a%b);
}
int main() {
scanf("%d%d",&n,&m);
for (int i=0;i<=(n+1)*(m+1);i++) c[i][0]=1;
for (int i=1;i<=(n+1)*(m+1);i++)
for (int j=1;j<=min(3,i);j++) c[i][j]=c[i-1][j-1]+c[i-1][j];
LL ans=c[(n+1)*(m+1)][3]-(n+1)*c[m+1][3]-(m+1)*c[n+1][3];
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) {
LL x=gcd(i,j)+1;
if (x>2) ans-=(x-2)*2*(n-i+1)*(m-j+1);
}
printf("%lld",ans);
return 0;
}

  

【bzoj3505】 Cqoi2014—数三角形的更多相关文章

  1. [bzoj3505][CQOI2014]数三角形_组合数学

    数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...

  2. BZOJ3505 [Cqoi2014]数三角形

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. BZOJ3505 CQOI2014数三角形(组合数学)

    显然可以用总方案数减掉三点共线的情况.对于三点共线,一个暴力的做法是枚举起点终点,其间整点数量即为横纵坐标差的gcd-1.这样显然会T,注意到起点终点所形成的线段在哪个位置是没有区别的,于是枚举线段算 ...

  4. [bzoj3505 Cqoi2014] 数三角形 (容斥+数学)

    传送门 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正 ...

  5. bzoj3505: [Cqoi2014]数三角形 [数论][gcd]

    Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和 ...

  6. 【排列组合】bzoj3505 [Cqoi2014]数三角形

    http://blog.csdn.net/zhb1997/article/details/38474795 #include<cstdio> #include<algorithm&g ...

  7. 2018.09.09 bzoj3505: [Cqoi2014]数三角形(容斥原理+简单计数)

    传送门 正难则反. 可以直接把问题转化成求出三点共线的情况数量. 如果同在一排或一列显然可以直接算,关键是如何求出斜着的. 我们知道,对于一个整点矩形. 如果长为x,宽为y,那么这个矩形任意一条对角线 ...

  8. bzoj3505 [Cqoi2014]数三角形——组合数+容斥

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题啊好题...好像还曾经出现在什么智力测试卷中来着...当时不会现在还是无法自己推出 ...

  9. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

  10. 【bzoj3505】[Cqoi2014]数三角形

    [bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...

随机推荐

  1. iOS 实现转盘的效果

    效果 #import "ViewController.h" @interface ViewController () @property (weak, nonatomic) IBO ...

  2. 常用API——字符串String型函数

    上图: 声明 var myString = new String(“Every good boy does fine.”); var myString = “Every good boy does f ...

  3. 集合2--毕向东java基础教程视频学习笔记

    Day14 08 LinkedList09 LinkedList练习10 ArrayList练习11 ArrayList练习2 12 HashSet13 HashSet存储自定义对象14 HashSe ...

  4. AngularJs中,如何在render完成之后,执行Js脚本

    AngularJs是Google开源的前端JS框架.使用AngularJs, 我们能够容易地.健壮的开发出类似于Gmail一样的单页Web应用.AngularJs这个新兴的MVC前端框架,具有以下特点 ...

  5. SQL Server 2012 The report server cannot open a connection to the report server database

    案例环境: 操作系统版本:    Windows Server 2012 R2 Standard 数据库版本  :    SQL SERVER 2012 SP2 案例介绍: 今天进入一台新安装的SQL ...

  6. SQL SERVER如何通过SQL语句获服务器硬件和系统信息

    在SQL SERVER中如何通过SQL语句获取服务器硬件和系统信息呢?下面介绍一下如何通过SQL语句获取处理器(CPU).内存(Memory).磁盘(Disk)以及操作系统相关信息.如有不足和遗漏,敬 ...

  7. ElasticSearch大数据分布式弹性搜索引擎使用

    阅读目录: 背景 安装 查找.下载rpm包 .执行rpm包安装 配置elasticsearch专属账户和组 设置elasticsearch文件所有者 切换到elasticsearch专属账户测试能否成 ...

  8. linux中tar之解压和压缩常用

    我们知道在windows中解压和压缩有两个非常强大的工具winRar和国产的好压工具,在linux中也有一款强大的解压和压缩工具.那就是大名鼎鼎的tar.我们首先看看tar命令的使用格式 语法:tar ...

  9. Linux indent

    一.简介 indent可辨识C的原始代码文件,并加以格式化,以方便程序设计师阅读. 二.选项 http://www.runoob.com/linux/linux-comm-indent.html 三. ...

  10. A book to recommend: The art of readable code

    我最喜欢的一本书 - 教我如何写可读的代码 Two month fan of the book, from August - Oct. 2014; and then, started to pract ...