https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E4%BD%BF%E7%94%A8Transformers%E6%8E%A8%E7%90%86

我们提供了命令行和Web图形界面两种方式使用原生Transformers进行推理。

以加载Chinese-Alpaca-7B模型为例(加载Chinese-Alpaca-Plus的方式见下面的加载Chinese-Alpaca-Plus)说明启动方式。

命令行交互形式

python scripts/inference_hf.py \
--base_model path_to_original_llama_hf_dir \
--lora_model path_to_chinese_llama_or_alpaca_lora \
--with_prompt \
--interactive

如果之前已执行了merge_llama_with_chinese_lora_to_hf.py脚本将lora权重合并,那么无需再指定--lora_model,启动方式更简单:

python scripts/inference_hf.py \
--base_model path_to_merged_llama_or_alpaca_hf_dir \
--with_prompt \
--interactive

参数说明:

  • --base_model {base_model} :存放HF格式的LLaMA模型权重和配置文件的目录。如果之前合并生成的是PyTorch格式模型,请转换为HF格式
  • --lora_model {lora_model} :中文LLaMA/Alpaca LoRA解压后文件所在目录,也可使用Model Hub模型调用名称。若不提供此参数,则只加载--base_model指定的模型
  • --tokenizer_path {tokenizer_path}:存放对应tokenizer的目录。若不提供此参数,则其默认值与--lora_model相同;若也未提供--lora_model参数,则其默认值与--base_model相同
  • --with_prompt:是否将输入与prompt模版进行合并。如果加载Alpaca模型,请务必启用此选项!
  • --interactive:以交互方式启动,以便进行多次单轮问答(此处不是llama.cpp中的上下文对话)
  • --data_file {file_name}:非交互方式启动下,按行读取file_name中的的内容进行预测
  • --predictions_file {file_name}:非交互式方式下,将预测的结果以json格式写入file_name
  • --use_cpu: 仅使用CPU进行推理
  • --gpus {gpu_ids}: 指定使用的GPU设备编号,默认为0。如使用多张GPU,以逗号分隔,如0,1,2

Web图形界面交互形式

该方式将启动Web前端页面进行交互,并且支持多轮对话。除transformers之外,需要安装gradio和mdtex2html:

pip install gradio
pip install mdtex2html

启动命令如下:

python scripts/gradio_demo.py \
--base_model path_to_original_llama_hf_dir \
--lora_model path_to_chinese_alpaca_lora

同样,如果已经执行了merge_llama_with_chinese_lora_to_hf.py脚本将lora权重合并,那么无需再指定--lora_model

python scripts/gradio_demo.py --base_model path_to_merged_alpaca_hf_dir

参数说明:

  • --base_model {base_model} :存放HF格式的LLaMA模型权重和配置文件的目录。如果之前合并生成的是PyTorch格式模型,请转换为HF格式
  • --lora_model {lora_model} :中文Alpaca LoRA解压后文件所在目录,也可使用Model Hub模型调用名称。若不提供此参数,则只加载--base_model指定的模型
  • --tokenizer_path {tokenizer_path}:存放对应tokenizer的目录。若不提供此参数,则其默认值与--lora_model相同;若也未提供--lora_model参数,则其默认值与--base_model相同
  • --use_cpu: 仅使用CPU进行推理
  • --gpus {gpu_ids}: 指定使用的GPU设备编号,默认为0。如使用多张GPU,以逗号分隔,如0,1,2

加载Chinese-Alpaca-Plus

目前两个脚本都不支持直接从LoRA权重加载Chinese-Alpaca-Plus进行推理;如要进行Chinese-Alpaca-Plus进的推理,请先合并模型,流程如下:

  1. 使用merge_llama_with_chinese_lora.py合并lora,生成完整的hf格式模型权重:
python scripts/merge_llama_with_chinese_lora.py \
--base_model path_to_hf_llama \
--lora_model path_to_chinese_llama_plus_lora,path_to_chinese_alpaca_plus_lora \
--output_type huggingface \
--output_dir path_to_merged_chinese_alpaca_plus
  1. 使用inference_hf.py或gradio_demo.py加载合并后的模型进行推理,如:
python scripts/inference_hf.py \
--base_model path_to_merged_chinese_alpaca_plus \
--with_prompt --interactive

注意事项

  • 因不同框架的解码实现细节有差异,该脚本并不能保证复现llama.cpp的解码效果
  • 该脚本仅为方便快速体验用,并未对推理速度做优化
  • 如在CPU上运行7B模型推理,请确保有32GB内存;如在GPU上运行7B模型推理,请确保有20GB显存

[转帖]使用Transformers推理的更多相关文章

  1. 偶尔转帖:AI会议的总结(by南大周志华)

    偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier ...

  2. 美团:WSDM Cup 2019自然语言推理任务获奖解题思路

    WSDM(Web Search and Data Mining,读音为Wisdom)是业界公认的高质量学术会议,注重前沿技术在工业界的落地应用,与SIGIR一起被称为信息检索领域的Top2. 刚刚在墨 ...

  3. Transformers 中使用 TorchScript | 四

    作者|huggingface 编译|VK 来源|Github 注意:这是我们使用TorchScript进行实验的开始,我们仍在探索可变输入大小模型的功能.它是我们关注的焦点,我们将在即将发布的版本中加 ...

  4. Transformers 库常见的用例 | 三

    作者|huggingface 编译|VK 来源|Github 本章介绍使用Transformers库时最常见的用例.可用的模型允许许多不同的配置,并且在用例中具有很强的通用性.这里介绍了最简单的方法, ...

  5. 【推理引擎】从源码看ONNXRuntime的执行流程

    目录 前言 准备工作 构造 InferenceSession 对象 & 初始化 让模型 Run 总结 前言 在上一篇博客中:[推理引擎]ONNXRuntime 的架构设计,主要从文档上对ONN ...

  6. 使用英特尔 Sapphire Rapids 加速 PyTorch Transformers 模型

    大约一年以前,我们 展示 了如何在第三代 英特尔至强可扩展 CPU (即 Ice Lake) 集群上分布式训练 Hugging Face transformers 模型.最近,英特尔发布了代号为 Sa ...

  7. 基于 Hugging Face Datasets 和 Transformers 的图像相似性搜索

    基于 HuggingFace Datasets 和 Transformers 的图像相似性搜索 通过本文,你将学习使用 Transformers 构建图像相似性搜索系统.找出查询图像和潜在候选图像之间 ...

  8. 上篇 | 使用 🤗 Transformers 进行概率时间序列预测

    介绍 时间序列预测是一个重要的科学和商业问题,因此最近通过使用基于深度学习 而不是经典方法的模型也涌现出诸多创新.ARIMA 等经典方法与新颖的深度学习方法之间的一个重要区别如下. 概率预测 通常,经 ...

  9. 下篇 | 使用 🤗 Transformers 进行概率时间序列预测

    在<使用 Transformers 进行概率时间序列预测>的第一部分里,我们为大家介绍了传统时间序列预测和基于 Transformers 的方法,也一步步准备好了训练所需的数据集并定义了环 ...

  10. Transformers Pipelines

    pipelines 是使用模型进行推理的一种很好且简单的方法.这些pipelines 是从库中抽象出大部分复杂代码的对象,提供了一个简单的API,专门用于多个任务,包括命名实体识别.屏蔽语言建模.情感 ...

随机推荐

  1. 想了解Webpack,看这篇就够了

    摘要:Webpack是一种前端资源构建工具,一个静态模块打包器. 1. 摘要 Webpack是一种前端资源构建工具,一个静态模块打包器.在Webpack看来,前端的所有资源文件(js/json/css ...

  2. 逼疯UE设计师,不可不知的提升产品用户体验的10个测试方法

    摘要:用户体验的描述比较主观,产品功能的可用性.可靠性.性能等都会影响用户的使用体验,比如功能bug问题也会说体验不好,程序崩溃也会说体验不好,性能卡顿会说体验不好,那是不是都在用户体验测试的范围呢? ...

  3. 华为云API中心:汇聚千行百业API资产,打造API全生命周期极致体验

    摘要:2022年11月9日,华为云全球生态部总裁康宁在华为全联接大会2022上发表"共创新价值,一切皆服务"主题演讲,并发布全新的华为云API中心. 本文分享自华为云社区<华 ...

  4. DevSecOps 安全即代码基础指南

    在过去十年里我们见证了越来越多的企业开始或已经采用云技术,这也意味着云安全的重要性也越来越高.当谈及安全威胁,McKinsey 的一篇文章表明,云上大多数漏洞都是由于配置错误导致而非外部攻击造成底层云 ...

  5. 智能电视APP鲜时光,如何应用AB测试打造极致的用户观看体验?

     更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群   数字技术的发展让智能电视普及率大幅提升,2023年智能电视的市场渗透率已超90%,与智能电视相匹配的各类应用 ...

  6. 消息驱动 —— SpringCloud Stream

    Stream 简介 Spring Cloud Stream 是用于构建消息驱动的微服务应用程序的框架,提供了多种中间件的合理配置 Spring Cloud Stream 包含以下核心概念: Desti ...

  7. CentOS7系统上安装升级Vim8

    基本步骤 1.卸载旧版vim yum remove vim* -y 2. 到Vim官方Github仓库下载目前最新的Vim Release版本 git clone https://github.com ...

  8. Codeforces Round #734 (Div. 3) A~D1 个人题解

    比赛链接:Here 1551A. Polycarp and Coins (签到) 题意: 我们有任意个面额为 \(1\) 和 \(2\) 的硬币去支付 \(n\) 元账单, 现在请问怎么去分配数额使得 ...

  9. Codeforces Round #715 (Div. 2) (A~D 补题记录)

    补题链接:Here 经典手速场 1509A. Average Height 题意:要找出最大不平衡对序列 先输出奇数,然后输出偶数 void solve() { int n; cin >> ...

  10. 【每日一题】8.Shortest Path (树上DFS)

    题目链接:Here 题意总结:给定的是无向图(树),要求把分成 \(n/2\) 对 让权值最小 思路: 看一下范围 在加上是一棵树 所以做法应该是dfs 复杂度为 \(\mathcal{O}(n)\) ...