scikit-learn中,回归模型的可视化评估是一个重要环节。
它帮助我们理解模型的性能,分析模型的预测能力,以及检查模型是否存在潜在的问题。
通过可视化评估,我们可以更直观地了解回归模型的效果,而不仅仅依赖于传统的评估指标。

1. 残差图

所谓残差,就是实际观测值与预测值之间的差值。

残差图是指以残差为纵坐标,以任何其他指定的量为横坐标的散点图。
如果残差图中描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。反之,则说明回归直线对原观测值的拟合不理想。

下面做一个简单的线性回归模型,然后绘制残差图。

from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay fig, ax = plt.subplots(1, 2)
fig.set_size_inches(10, 4) X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据") # 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X) ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("残差图")
display.plot(ax=ax[1]) plt.show()


左边是随机生成的样本数据,其中的红线是训练之后拟合的线性模型。
右边是根据scikit-learn中提供的PredictionErrorDisplay模块生成的残差图

2. 对比图

对比图将实际目标值与模型预测值进行对比,直观地展示模型的预测能力。
通常,我们希望看到实际值预测值沿着一条\(y=x\)的直线分布,这意味着模型预测非常准确。

下面用一些混乱度高的样本,来看看对比图的效果。

from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay fig, ax = plt.subplots(1, 2)
fig.set_size_inches(12, 6) # 混乱度高,noise=100
X, y = make_regression(n_samples=100, n_features=1, noise=100)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据") # 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X) ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("对比图")
display.plot(ax=ax[1], kind="actual_vs_predicted") plt.show()


原始样本比较混乱,线性模型很难拟合,所以看对比图就可以发现,真实值预测值差别很大。
越靠近对比图中间那个虚线的点,真实值预测值越接近。

换一个混乱程度低的样本,再看看对比图的效果。

# 混乱度 noise=10,比如上面那个示例降10倍
# 上面代码只改这一行,其它部分代码不用改
X, y = make_regression(n_samples=100, n_features=1, noise=10)


从图中也可以看出,这次的模型拟合效果要好很多。

3. 总结

可视化的图形向我们传达了模型预测的准确性、线性假设的满足程度、误差项的独立性以及特征对预测的影响程度等信息,让我们对模型有更深入的了解。

通过图形化的方式,帮助我们更直观地理解回归模型的性能,发现模型潜在的问题,指导我们改进模型。
不过,可视化评估虽然直观,但并不能完全替代传统的量化评估指标。
两者应该相互补充,共同构成对回归模型性能的全面评价。

【scikit-learn基础】--『回归模型评估』之可视化评估的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. 逻辑回归模型(Logistic Regression, LR)基础

    逻辑回归模型(Logistic Regression, LR)基础   逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...

  4. 『高性能模型』轻量级网络ShuffleNet_v1及v2

    项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...

  5. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  6. 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs

    论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...

  7. 『高性能模型』轻量级网络MobileNet_v2

    论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...

  8. 20165308『网络对抗技术』Exp5 MSF基础应用

    20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

  9. 2017-2018-2 20155303『网络对抗技术』Exp9:Web安全基础

    2017-2018-2 『网络对抗技术』Exp9:Web安全基础 --------CONTENTS-------- 一.基础问题回答 1.SQL注入攻击原理,如何防御? 2.XSS攻击的原理,如何防御 ...

  10. 2017-2018-2 20155303『网络对抗技术』Exp8:Web基础

    2017-2018-2 『网络对抗技术』Exp8:Web基础 --------CONTENTS-------- 一.原理与实践说明 1.实践具体要求 2.基础问题回答 二.实践过程记录 1.Web前端 ...

随机推荐

  1. webpack原理(3):Tapable源码分析及钩子函数作用分析

    webpack本质上是一种事件流的机制,它的工作流程就是将各个插件串联起来,而实现这一切的核心就是Tapable,webpack中最核心的负责编译的Compiler和负责创建bundles的Compi ...

  2. 火山引擎DataLeap:3步打造“指标管理”体系,幸福里数据中心是这么做的

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 一家企业,为什么要搭建指标体系? 一句话总结来说,全面.合理的指标体系可以帮助企业统一目标,将业务环节量化,帮助策 ...

  3. IIS 设置超时时间

    高级设置 => 限制 => 连接超时(秒),默认120秒,根据实际情况调整

  4. AtCoder Beginner Contest 335 总结

    ABC335总结 A.202<s>3</s> 翻译 给你一个由小写英文字母和数字组成的字符串 \(S\). \(S\) 保证以 2023 结尾. 将 \(S\) 的最后一个字符 ...

  5. ChatGPT带你入门机器学习:逻辑回归模型博客和小红书风格文案一次搞定!

    打脸了 顺手向大家演示一下如何用 ChatGPT 写技术博客吧,其实蛮简单的,特别需要操心的是它会一本正经的胡说八道,还信誓旦旦的.我们要审查它的回答,万不可全信. 为了便于阅读,我把prompt加粗 ...

  6. C#写日志工具类(新版)

    源码:https://gitee.com/s0611163/LogUtil 昨天打算把我以前写的一个C#写日志工具类放到GitHub上,却发现了一个BUG,当然,已经修复了. 然后写Demo对比了NL ...

  7. C# Task 多任务:C# 扩展TaskScheduler实现独立线程池,支持多任务批量处理,互不干扰,无缝兼容Task

    先上源码: https://gitee.com/s0611163/TaskSchedulerEx     为什么编写TaskSchedulerEx类? 因为.NET默认线程池只有一个线程池,如果某个批 ...

  8. 【MFC】CSingleLock的使用

    转载文章:CSingleLock的使用 // 先看看其代码: // 声明 class CSingleLock { // Constructors public: CSingleLock(CSyncOb ...

  9. <vue 路由 6、动态路由-方法传递参数>

    一.query效果 点击query按钮 二.param效果 点击param按钮 注意点 1:重新刷新浏览器后,参数都不在了. 2:url中能看不到传递的参数 3.分别用{{$route. params ...

  10. C#开源跨平台的多功能Steam工具箱&GitHub加速神器

    前言 作为一个程序员你是否会经常会遇到GitHub无法访问(如下无法访问图片),或者是访问和下载源码时十分缓慢就像乌龟爬行一般.今天分享一款C#开源的.跨平台的多功能Steam工具箱和GitHub加速 ...