G. Underfail

time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output

You have recently fallen through a hole and, after several hours of unconsciousness, have realized you are in an underground city. On one of your regular, daily walks through the unknown, you have encountered two unusually looking skeletons called Sanz and P’pairus, who decided to accompany you and give you some puzzles for seemingly unknown reasons.

One day, Sanz has created a crossword for you. Not any kind of crossword, but a 1D crossword! You are given m words and a string of length n. You are also given an array p, which designates how much each word is worth — the i-th word is worth pi points. Whenever you find one of the m words in the string, you are given the corresponding number of points. Each position in the crossword can be used at most x times. A certain word can be counted at different places, but you cannot count the same appearance of a word multiple times. If a word is a substring of another word, you can count them both (presuming you haven’t used the positions more than x times).

In order to solve the puzzle, you need to tell Sanz what’s the maximum achievable number of points in the crossword. There is no need to cover all postions, just get the maximal score! Crossword and words contain only lowercase English letters.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the length of the crossword. The second line contains the crossword string. The third line contains a single integer m (1 ≤ m ≤ 100) — the number of given words, and next m lines contain description of words: each line will have a string representing a non-empty word (its length doesn't exceed the length of the crossword) and integer pi (0 ≤ pi ≤ 100). Last line of the input will contain x (1 ≤ x ≤ 100) — maximum number of times a position in crossword can be used.

Output

Output single integer — maximum number of points you can get.

Example

input
6
abacba
2
aba 6
ba 3
3
output
12

Note

For example, with the string "abacba", words "aba" (6 points) and "ba" (3 points), and x = 3, you can get at most 12 points - the word "aba" appears once ("abacba"), while "ba" appears two times ("abacba"). Note that for x = 1, you could get at most 9 points, since you wouldn’t be able to count both "aba" and the first appearance of "ba".

Solution

题目大意:给定一个长度为N的模板串,以及M个短串,每个短串有一个价值c,用一个短串完全匹配模板串的区间,可以得到短串的价值。每个短串可以匹配任意次,模板串的每个位置,只能匹配K次。求最大价值。

这道题还是比较容易想到的

首先把所有短串去和大串匹配,得到每个小串的完全匹配的区间。 然后套用费用流经典建图。

这个过程可以暴力,Hash,AC自动机,KMP...

然后对于这个区间$[l,r]$,我们连边$<l,r+1>,cap=1,cost=c$ ,这里连边$<l,r+1>$是控制区间左闭右开,否则会出现负环。

然后连$<S,1>,cap=K,cost=0$以及$<N,T>,cap=K,cost=0$ ,前一个位置向后一个位置连边$<i,i+1>,cap=K,cost=0$

然后跑$S->T$的最大费用最大流就是答案。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 510
int N,M,K,c[];
char s[MAXN],ss[][];
namespace Hash
{
#define base 131
#define ULL unsigned long long
ULL hash[MAXN],bin[MAXN];
void Hashtable()
{
bin[]=; for (int i=; i<=N; i++) bin[i]=bin[i-]*base;
for (int i=; i<=N; i++) hash[i]=hash[i-]*base+s[i];
}
ULL GetHash(int l,int r) {return hash[r]-hash[l-]*bin[r-l+];}
ULL Hashit(char st[])
{
ULL re=; int len=strlen(st+);
for (int i=; i<=len; i++) re=re*base+st[i];
return re;
}
}
using namespace Hash;
namespace CostFlow
{
#define INF 0x7fffffff
#define MAXM 100010
struct EdgeNode{int next,to,cap,cost,from;}edge[MAXM<<];
int head[MAXN],cnt=;
inline void AddEdge(int u,int v,int w,int c) {cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w; edge[cnt].cost=c; edge[cnt].from=u;}
inline void InsertEdge(int u,int v,int w,int c) {AddEdge(u,v,w,c); AddEdge(v,u,,-c);}
int S,T,Cost,dis[MAXN],visit[MAXN],mark[MAXN];
queue<int>q;
inline bool SPFA()
{
for (int i=S; i<=T; i++) dis[i]=-INF;
q.push(S); visit[S]=; dis[S]=;
while (!q.empty())
{
int now=q.front(); q.pop(); visit[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]<dis[now]+edge[i].cost)
{
dis[edge[i].to]=dis[now]+edge[i].cost;
if (!visit[edge[i].to]) q.push(edge[i].to),visit[edge[i].to]=;
}
}
return dis[T]!=-INF;
}
inline int dfs(int now,int low)
{
mark[now]=;
if (now==T) return low;
int w,used=;
for (int i=head[now]; i; i=edge[i].next)
if (!mark[edge[i].to] && edge[i].cap && dis[edge[i].to]==dis[now]+edge[i].cost)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w; Cost+=w*edge[i].cost; used+=w;
if (used==low) return low;
}
return used;
}
inline int zkw()
{
int re=;
while (SPFA())
{
mark[T]=;
while (mark[T])
memset(mark,,sizeof(mark)),re+=dfs(S,INF);
}
return re;
}
inline void BuildGraph()
{
S=,T=N+;
Hash::Hashtable();
InsertEdge(S,,K,); InsertEdge(N,T,K,);
for (int i=; i<=N-; i++) InsertEdge(i,i+,K,);
for (int i=; i<=M; i++)
{
ULL _hash=Hash::Hashit(ss[i]); int l=strlen(ss[i]+);
for (int j=; j+l-<=N; j++)
if (Hash::GetHash(j,j+l-)==_hash) InsertEdge(j,j+l,,c[i]);
}
// for (int i=2; i<=cnt; i+=2) printf("%d %d %d %d\n",edge[i].from,edge[i].to,edge[i].cap,edge[i].cost);
}
}
int main()
{
N=read(); scanf("%s",s+);
M=read();
for (int i=; i<=M; i++) scanf("%s",ss[i]+),c[i]=read();
K=read();
CostFlow::BuildGraph();
CostFlow::zkw();
printf("%d\n",CostFlow::Cost);
return ;
}

Codeforces上的数据真是太小了...这个题暴力都能跑的那么快...

【Codeforces717G】Underfail Hash + 最大费用最大流的更多相关文章

  1. Codeforces 717G Underfail(最小费用最大流 + AC自动机)

    题目 Source http://codeforces.com/problemset/problem/717/G Description You have recently fallen throug ...

  2. [CODEVS1917] 深海机器人问题(最小费用最大流)

    传送门 [问题分析] 最大费用最大流问题. [建模方法] 把网格中每个位置抽象成网络中一个节点,建立附加源S汇T. 1.对于每个顶点i,j为i东边或南边相邻的一个节点,连接节点i与节点j一条容量为1, ...

  3. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  4. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  5. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  8. 最小/大费用最大流模板(codevs1914)

    void addedge(int fr,int to,int cap,int cos){ sid[cnt].fr=fr;sid[cnt].des=to;sid[cnt].cap=cap;sid[cnt ...

  9. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

随机推荐

  1. Android屏幕适配总结

    一.首先需要明白的几个概念 1.屏幕尺寸:也就是我们平常所说的某某手机几寸屏.比如苹果的4.7寸, 荣耀6的5.5寸.这里说的寸是英寸(1 英寸 = 2.54 厘米). 计算方法:屏幕尺寸=对角先尺寸 ...

  2. [css]我要用css画幅画(三)

    接着之前的[css]我要用css画幅画(二), 今天,我画了一个小人,他的名字暂时叫作小明. 以下只列出本次修改增加的内容 html如下: <div class="human left ...

  3. Java暗箱操作之for-each

    对于我们常用的ArrayList等容器类,经常需要一个一个遍历里面的元素,从而对各个元素执行对应的操作. 像我代码写多了,通常的做法是用传统的,类似于数组遍历的方法,即在for循环中设置一个int变量 ...

  4. ORACLE OLAP错误ORA-06512: at "SYS.OLAPIHISTORYRETENTION"

    刚刚安装了ORACLE 10g R2后,启动数据库时发现告警日志有如下错误: Database Characterset is UTF8 replication_dependency_tracking ...

  5. WPF 显示文件列表中使用 ListBox 变到ListView 最后使用DataGrid

    WPF 显示文件列表中使用 ListBox 变到ListView 最后使用DataGrid 故事背景: 需要检索某目录下文件,并列出来,提供选择和其他功能. 第一版需求: 列出文件供选择即可,代码如下 ...

  6. Python基础1

    本节内容2016-05-30 Python介绍 发展史 Python 2 0r 3? 安装 Hello word程序 变量 用户输入 模块初识 .pyc? 数据类型初识 数据运算 if...else语 ...

  7. mysql中类似indexOf的方法LOCATE()

     LOCATE(substr,str), LOCATE(substr,str,pos) 第一个语法返回substr在字符串str 的第一个出现的位置. 第二个语法返回子符串 substr 在字符串st ...

  8. linux shell 读取for循环中出现难处理的数据之单引号错误实例

    原语句: #!/bin/bash for test in I don't know if this'll work do echo "work:$test" done 结果: wo ...

  9. Maven3.3.9环境搭建

    Maven3.3.9环境搭建 1.配置JDK 1.7 http://www.cnblogs.com/nami/archive/2013/04/11/3011795.html 2.下载Maven htt ...

  10. UEFI+GPT模式下的Windows系统中分区结构和默认分区大小及硬盘整数分区研究

    内容摘要:本文主要讨论和分析在UEFI+GPT模式下的Windows系统(主要是最新的Win10X64)中默认的分区结构和默认的分区大小,硬盘整数分区.4K对齐.起始扇区.恢复分区.ESP分区.MSR ...