zkq 数学听课笔记
线性代数
- 域 \(F\),
OI
中常用的域是 \(\Z_{p^c}\)。 - \(n\) 维向量 \(\vec x \in F^n\),其中 \(x_i \in F\),注意向量是列向量。
- \(F^n\) 向量/线性空间,满足线性性
- 八个性质,\(u, v, w \in V\),\(c, d \in F\)
- \(u + v = v + u\)
- \((u + v) + w = u + (v + w)\)
- 存在 \(0\) 元
- \(\exists (-u) \in F \quad u + (-u) = 0\)
- \(1u = u\)
- \(c(u + v) = cu + cv\)
- \((c + d)u = cu + du\)
- \(c(du) = (cd)u\)
- 八个性质,\(u, v, w \in V\),\(c, d \in F\)
- \(F^n\) 向量/线性空间,满足线性性
- 矩阵:\(M \in F^{n \times m}\)。
- 线性变换:\(f: V \to V, f(u + v) = f(u) + f(v), f(cx) = cf(x)\)
- 乘向量:\(F^m \to F^n\)。
- 乘矩阵,线性变换的复合(可以这么理解,结果仍然是线性变换。
- 有限集合下
- 向量线性独立:\(\not \exists i ~ v_i = \sum_{j \ne i} \alpha_i v_j\)
- 张成 \(\mathrm{span}(\{v_1, \ldots, v_n\}) = \{v | \alpha_1 v_1 + \ldots + \alpha_n v_n, \alpha_i \in F\}\)。
- 线性空间的基 \(B\) 是一组线性独立,张成 \(V\) 的向量集
- \(\dim (V) = \mathrm{card} (B)\)。
- 无限集合下
- 线性独立:所有有限子集线性独立
- 张成:所有有限子集张成的并
- 子空间 \(W \subseteq V\) 注意 \(W\) 也是线性空间
- \(0 \in W\),\(W \bigcap V = W\)。
- 矩阵 —— 列空间
- 秩 \(\mathrm{rank}\):列空间的维度
- 满秩矩阵:方阵,秩 = 行数
- \(A\) 满秩 \(\iff (A x = 0 \iff x = 0)\)
- \(\mathrm{rank}(A + B) \le \mathrm{rank}(A) + \mathrm{rank}(B)\)
- 逆矩阵:\(A A^{-1} = A^{-1} A = I\),不存在当且仅当不满秩。
- CF1070L, CF963E
- \(\det A = \sum_P (-1)^{inv(P)} \prod_{i = 1}^n a_{i, P_i}\).
- \(\det I = 1\)
- 基本变换:
- 交换行:\(\det \leftarrow -\det\)
- 行数乘:\(\det \leftarrow c \det\)
- 行加上另一行:\(\det\) 不变。
- 满秩 \(\iff \det \ne 0\)。
- 矩阵树定理:
- \(L = D - A, \det(L_{[0]}) = \sum_T \prod_{e \in T} w(e)\)。
- P6624, CF578F
- LGV 引理
- 对于 DAG 和若干起点,终点,令 \(M_{i,j} = A_i\) 到 \(B_j\) 的方案数。
- 那么 \(\det M\) 是不交路径的方案数。
- P7736, gym102978A
- 特征值/多项式
- \(Ax = \lambda x \to \det (A - \lambda I) = 0\),求特征值即求解上述方程。
- 特征多项式:\(P_A = \det(A - \lambda I)\) 是关于 \(\lambda\) 的 \(n\) 次多项式
- 矩阵的迹:对角线的和
- \([\lambda^n]P_A = (-1)^n\)
- \([\lambda^{n - 1}] P_A = (-1)^{n - 1} tr(A)\)
- \([\lambda^0] P_A = \det A\)
- 代数闭域:\(\forall f ~ \exists x (f(x) = 0)\)。
- \(P_A = \prod \lambda_i - \lambda\)
- \(\sum \lambda_i = tr(A)\)
- \(\prod \lambda_i = \det (A)\)
- 谱范数 \(A^T A\) 的最大特征值的平方根(\(A\) 的最大奇异值)
- 谱分解(对角化)
- \(AQ = Q\Lambda \to A = Q \Lambda Q^{-1} \to A^k = Q \Lambda^k Q^{-1}\)。
- ……
- 马尔克夫矩阵:
- \(A 1 = 1, A\),考虑随机游走的过程
- \(A\) 有特征值 \(\lambda = 1\)。
- ……
- 计算几何
- 平面凸包,闵和
- 旋转卡壳
- 半平面交
- ……
- 多项式技巧
- NTT:有限域下的 FFT
- 另一种卷积的方式
zkq 数学听课笔记的更多相关文章
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- bayaim_java_入门到精通_听课笔记bayaim_20181120
------------------java_入门到精通_听课笔记bayaim_20181120--------------------------------- Java的三种技术架构: JAVAE ...
- 孔浩老师的 Struts2 教程听课笔记(思维导图)
最近有空重头学习了一遍孔浩老师的 Struts2 教程,重新写了一份听课笔记.后面常用 form 标签.服务器端验证.异常处理因为时间问题,没有来得及整理.后续我会抽空补上.最近忙着准备笔试.面试. ...
- SAP BW/4HANA 听课笔记
BW/4HANA听课笔记 1.本地SQL,BW/4HANA对象和HANA VIEW互相访问: 2.高级分析功能数据分析预测: 3.InfoOjbect:Characteristics(维度),Key ...
- 3D数学学习笔记——笛卡尔坐标系
本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...
- 3D数学读书笔记——3D中的方位与角位移
本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595 方位和角位移 ...
- 3D数学--学习笔记(五岁以下儿童):总结一些概念(避免遗忘!)
下面是一些概念只是一个简单的解释,这里是它的一个简单的了解! 当人们谈论,我能理解有关. 1.正交投影: 投影.这意味着降维操作. 全部的点都被拉平至垂直的轴(2D)或平面(3D)上.这样的类型的投影 ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- deeplearning.ai 构建机器学习项目 Week 1 机器学习策略 I 听课笔记
这门课是讲一些分析机器学习问题的方法,如何更快速高效的优化机器学习系统,以及NG自己的工程经验和教训. 1. 正交化(Othogonalization) 设计机器学习系统时需要面对一个问题是:可以尝试 ...
- deeplearning.ai 人工智能行业大师访谈 Yoshua Bengio 听课笔记
1. 如何走上人工智能的研究的?Bengio说他小时候读了很多科幻小说,1985年(64年出生,21岁)研究生阶段开始阅读神经网络方面的论文,对这个领域产生了热情. 2. 如何看深度学习这些年的发展? ...
随机推荐
- 力扣550(MySQL)-游戏玩法分析Ⅳ(中等)
题目: 需求:编写一个 SQL 查询,报告在首次登录的第二天再次登录的玩家的分数,四舍五入到小数点后两位.换句话说,您需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除以玩家总数. 查询结 ...
- 力扣661(java)-图片平滑器(简单)
题目: 图像平滑器 是大小为 3 x 3 的过滤器,用于对图像的每个单元格平滑处理,平滑处理后单元格的值为该单元格的平均灰度. 每个单元格的 平均灰度 定义为:该单元格自身及其周围的 8 个单元格的 ...
- HarmonyOS NEXT应用开发案例——全屏登录页面
全屏登录页面 介绍 本例介绍各种应用登录页面. 全屏登录页面:在主页面点击跳转到全屏登录页后,显示全屏模态页面,全屏模态页面从下方滑出并覆盖整个屏幕,模态页面内容自定义,此处分为默认一键登录方式和其他 ...
- [FAQ] 没有docker用户组,怎么让普通用户有权限操作docker
如果没有docker用户组,可以通过以下步骤让普通用户有权限操作docker: 创建一个名为docker的用户组: sudo groupadd docker 将当前用户添加到docker用户组中: ...
- WPF 性能测试
本文收藏我给 WPF 做的性能测试.在你开始认为 WPF 的性能存在问题的时候,不妨来这篇博客里找找看我做过的测试.我记录的测试都是比较纯净的测试项目,没有业务逻辑的干扰,写法也正常,可以更加真实反映 ...
- 二进制安装多master节点的k8s集群(2)
1.环境准备 k8s集群角色 IP 主机名 安装的组件 控制节点 192.168.1.10 master apiserver.controller-manager.scheduler.etcd.doc ...
- STM32定时器原理
一.简介 不同的芯片定时器的数量不同,STM32F10x中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器. 基本定时器:TIM6. ...
- 004—Orcad创建简单分裂元件
004-Orcad创建简单分裂元件 以TPS545为例,先查看datasheet,管脚图,PCB封装.新建库,设置名称和part的数量,然后添加管脚,设定管脚属性.电源管脚要勾选Pin Visble. ...
- 一个随时更新的js库
1.src同级建commFunction=>timer.js 2.main.js引入 import time from '../commonFunction/time' Vue.prototyp ...
- Swift File Manager 三种文件路径查找方法对比
目录 1. 引言 2. 三种文件路径查找方法 2. 1 NSSearchPathForDirectoriesInDomains(_:_:_:) 2.2 urls(for:in:) 2.3 url(fo ...