线性代数

  • 域 \(F\),OI 中常用的域是 \(\Z_{p^c}\)。
  • \(n\) 维向量 \(\vec x \in F^n\),其中 \(x_i \in F\),注意向量是列向量。
    • \(F^n\) 向量/线性空间,满足线性性

      • 八个性质,\(u, v, w \in V\),\(c, d \in F\)

        1. \(u + v = v + u\)
        2. \((u + v) + w = u + (v + w)\)
        3. 存在 \(0\) 元
        4. \(\exists (-u) \in F \quad u + (-u) = 0\)
        5. \(1u = u\)
        6. \(c(u + v) = cu + cv\)
        7. \((c + d)u = cu + du\)
        8. \(c(du) = (cd)u\)
  • 矩阵:\(M \in F^{n \times m}\)。
    • 线性变换:\(f: V \to V, f(u + v) = f(u) + f(v), f(cx) = cf(x)\)
    • 乘向量:\(F^m \to F^n\)。
    • 乘矩阵,线性变换的复合(可以这么理解,结果仍然是线性变换。
  • 有限集合下
    • 向量线性独立:\(\not \exists i ~ v_i = \sum_{j \ne i} \alpha_i v_j\)
    • 张成 \(\mathrm{span}(\{v_1, \ldots, v_n\}) = \{v | \alpha_1 v_1 + \ldots + \alpha_n v_n, \alpha_i \in F\}\)。
    • 线性空间的基 \(B\) 是一组线性独立,张成 \(V\) 的向量集
      • \(\dim (V) = \mathrm{card} (B)\)。
  • 无限集合下
    • 线性独立:所有有限子集线性独立
    • 张成:所有有限子集张成的并
  • 子空间 \(W \subseteq V\) 注意 \(W\) 也是线性空间
    • \(0 \in W\),\(W \bigcap V = W\)。
  • 矩阵 —— 列空间
    • 秩 \(\mathrm{rank}\):列空间的维度
    • 满秩矩阵:方阵,秩 = 行数
    • \(A\) 满秩 \(\iff (A x = 0 \iff x = 0)\)
    • \(\mathrm{rank}(A + B) \le \mathrm{rank}(A) + \mathrm{rank}(B)\)
    • 逆矩阵:\(A A^{-1} = A^{-1} A = I\),不存在当且仅当不满秩。
      • CF1070L, CF963E
  • \(\det A = \sum_P (-1)^{inv(P)} \prod_{i = 1}^n a_{i, P_i}\).
    • \(\det I = 1\)
    • 基本变换:
      • 交换行:\(\det \leftarrow -\det\)
      • 行数乘:\(\det \leftarrow c \det\)
      • 行加上另一行:\(\det\) 不变。
    • 满秩 \(\iff \det \ne 0\)。
    • 矩阵树定理:
      • \(L = D - A, \det(L_{[0]}) = \sum_T \prod_{e \in T} w(e)\)。
      • P6624, CF578F
    • LGV 引理
      • 对于 DAG 和若干起点,终点,令 \(M_{i,j} = A_i\) 到 \(B_j\) 的方案数。
      • 那么 \(\det M\) 是不交路径的方案数。
      • P7736, gym102978A
  • 特征值/多项式
    • \(Ax = \lambda x \to \det (A - \lambda I) = 0\),求特征值即求解上述方程。
    • 特征多项式:\(P_A = \det(A - \lambda I)\) 是关于 \(\lambda\) 的 \(n\) 次多项式
      • 矩阵的迹:对角线的和
      • \([\lambda^n]P_A = (-1)^n\)
      • \([\lambda^{n - 1}] P_A = (-1)^{n - 1} tr(A)\)
      • \([\lambda^0] P_A = \det A\)
    • 代数闭域:\(\forall f ~ \exists x (f(x) = 0)\)。
    • \(P_A = \prod \lambda_i - \lambda\)
      • \(\sum \lambda_i = tr(A)\)
      • \(\prod \lambda_i = \det (A)\)
    • 谱范数 \(A^T A\) 的最大特征值的平方根(\(A\) 的最大奇异值)
    • 谱分解(对角化)
      • \(AQ = Q\Lambda \to A = Q \Lambda Q^{-1} \to A^k = Q \Lambda^k Q^{-1}\)。
      • ……
  • 马尔克夫矩阵:
    • \(A 1 = 1, A\),考虑随机游走的过程
    • \(A\) 有特征值 \(\lambda = 1\)。
    • ……
  • 计算几何
    • 平面凸包,闵和
    • 旋转卡壳
    • 半平面交
    • ……
  • 多项式技巧
    • NTT:有限域下的 FFT
    • 另一种卷积的方式

zkq 数学听课笔记的更多相关文章

  1. cs231n spring 2017 lecture9 CNN Architectures 听课笔记

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  2. bayaim_java_入门到精通_听课笔记bayaim_20181120

    ------------------java_入门到精通_听课笔记bayaim_20181120--------------------------------- Java的三种技术架构: JAVAE ...

  3. 孔浩老师的 Struts2 教程听课笔记(思维导图)

    最近有空重头学习了一遍孔浩老师的 Struts2 教程,重新写了一份听课笔记.后面常用 form 标签.服务器端验证.异常处理因为时间问题,没有来得及整理.后续我会抽空补上.最近忙着准备笔试.面试. ...

  4. SAP BW/4HANA 听课笔记

    BW/4HANA听课笔记 1.本地SQL,BW/4HANA对象和HANA VIEW互相访问: 2.高级分析功能数据分析预测: 3.InfoOjbect:Characteristics(维度),Key ...

  5. 3D数学学习笔记——笛卡尔坐标系

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...

  6. 3D数学读书笔记——3D中的方位与角位移

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595 方位和角位移 ...

  7. 3D数学--学习笔记(五岁以下儿童):总结一些概念(避免遗忘!)

    下面是一些概念只是一个简单的解释,这里是它的一个简单的了解! 当人们谈论,我能理解有关. 1.正交投影: 投影.这意味着降维操作. 全部的点都被拉平至垂直的轴(2D)或平面(3D)上.这样的类型的投影 ...

  8. deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记

    1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...

  9. deeplearning.ai 构建机器学习项目 Week 1 机器学习策略 I 听课笔记

    这门课是讲一些分析机器学习问题的方法,如何更快速高效的优化机器学习系统,以及NG自己的工程经验和教训. 1. 正交化(Othogonalization) 设计机器学习系统时需要面对一个问题是:可以尝试 ...

  10. deeplearning.ai 人工智能行业大师访谈 Yoshua Bengio 听课笔记

    1. 如何走上人工智能的研究的?Bengio说他小时候读了很多科幻小说,1985年(64年出生,21岁)研究生阶段开始阅读神经网络方面的论文,对这个领域产生了热情. 2. 如何看深度学习这些年的发展? ...

随机推荐

  1. c#采用toml做配置文件的坑过

    这几天在玩个程序,突然看到c#采用图toml文件,好用,直观,确实也简单. 不过...... github上示例写的 TOML to TomlTable TOML input file:v Enabl ...

  2. [Go] gorm 返回指定模型数据的处理方式

    重新 var 声明一个变量,类型为包含指定字段的结构体. 查询的时候,还是使用原始模型类型的变量. example: // For return data var retMember struct { ...

  3. [FAQ] web3js, Error: [number-to-bn] while converting number 0.1 to BN.js instance, error: invalid number value

    我们在调用合约方法时,都可以传一些参数的,比如转账金额 value. value 的单位是 wei,这是一个很小的单位,所以一般数值很大. 如果误把 ether 当成 wei 传参,就会报标题中的错误 ...

  4. Part-DB 配置流程

    介绍 Part-DB是一个开源的器件管理工具,博主用于管理个人的电子器材,最近捣鼓了一下这个工具,由于手头还有一块闲置的赛昉·星光2的开发板,所以我打算一起拿来捣鼓一下,如果不成功,就用树莓派(生气) ...

  5. Photoshop批量替换图层的方法

    平时做图片,应该有遇到这样的场景,比如P奖状.P邀请函,内容是一样的,但是图片上的名字是不一样的,要是要P100张的话,一个个手动复制改名字肯定会吐血(╯°□°)╯︵ ┻━┻ Photoshop里有个 ...

  6. 再聊解除HiddenApi限制

    炒冷饭,再聊聊大家都知晓的隐藏接口的限制解除. 说明 由于我们容器产品的特性,需要将应用完整的运行起来,所以必须涉及一些隐藏接口的反射调用,而突破反射限制则成为我们实现的基础.现将我们的解决方案分享给 ...

  7. Docker 必知必会----初识

    什么是Docker?Docker 是一个开源的容器管理引擎.开发者可以通过Docker直接管理应用程序所需要的容器.它的logo如下: 为什么需要Docker使用Docker主要有两个原因,1.屏蔽不 ...

  8. 利用神经网络对脑电图(EEG)降噪------开源的、低成本、低功耗微处理器神经网络模型解决方案

    具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 这个示例展示了如何使用EEGdenoiseNet基准数据集[1]和深度学习回归去除脑电图(EEG ...

  9. Rust 错误处理

    rust 处理错误,不使用 try catch, 而是使用 Result<T, E>. 简单的处理rust错误 在各种关于rust错误处理的文档中,为了解释清楚其背后的机制,看着内容很多, ...

  10. PHP实现没有数据库提交form表单到后台并且显示出数据列表(Vuejs和Element-UI前端设计表单)

    1.情境:如果你新建了个网站,却没有数据库服务器,如何把你的表单信息,提交到服务端后台,收集数据. 2.思路:如果用传统的form action 提交到一个form.php页面,此时只能存储一次数据, ...