前言

题目链接:洛谷UVA

题目简述

定义 \(\operatorname{count}(num)\) 表示 \(num\) 末尾 \(0\) 的个数。给出 \(n\)(\(n \leq 10^{18}\)),求 \(\sum \limits _ {i = 0} ^ {n} [2 \mid \operatorname{count}(i!)]\)。

题目分析

对于一个 \(i\),以下记成 \(n\)。

\(n!\) 末尾 \(0\) 的个数取决于 \(1 \sim n\) 中 \(2\) 的幂次之和和 \(5\) 的幂次之和的最小值。又由于 \(2\) 的幂次肯定超过 \(5\) 的幂次之和,参见以下证明:

证明:

\(1 \sim n\) 中,\(2\) 的倍数都至少贡献了 \(1\),\(4\) 的倍数在此基础上,又多贡献了一个 \(1\),以此类推。于是,\(1 \sim n\) 中,\(2\) 的幂次之和为:

\[\sum _ {i = 1} ^ {\infty} \Big \lfloor \cfrac{n}{2 ^ i} \Big \rfloor
\]

对于 \(5\) 同理:

\[\sum _ {i = 1} ^ {\infty} \Big \lfloor \cfrac{n}{5 ^ i} \Big \rfloor
\]

对于每一位考虑。\(\forall i\),\(\Big \lfloor \cfrac{n}{2 ^ i} \Big \rfloor \geq \Big \lfloor \cfrac{n}{5 ^ i} \Big \rfloor\),所以 \(\sum \limits _ {i = 1} ^ {\infty} \Big \lfloor \cfrac{n}{2 ^ i} \Big \rfloor \geq \sum \limits _ {i = 1} ^ {\infty} \Big \lfloor \cfrac{n}{5 ^ i} \Big \rfloor\)。证毕。

那么,末尾 \(0\) 的个数等于 \(1 \sim n\) 中 \(5\) 的幂次之和。

\[\operatorname{count}(n!) = \sum _ {i = 1} ^ {\infty} \Big \lfloor \cfrac{n}{5 ^ i} \Big \rfloor
\]

那么答案有:

\[ans = \sum _ {i = 0} ^ {n} \Bigg [ 2 \mid \sum _ {j = 1} ^ {\infty} \Big \lfloor \cfrac{i}{5 ^ j} \Big \rfloor \Bigg ]
\]

发现把 \(i\) 用 \(5\) 进制表示成 \(i = \overline{x_mx_{m-1}\ldots x_0}\),那么 \(\Big \lfloor \cfrac{}{5^j} \Big \rfloor\) 就是 \(5\) 进制下的移位。也即 \(\Big \lfloor \cfrac{i}{5^j} \Big \rfloor = \overline{x_mx_{m-1}\ldots x_j}\)。我们只关心这个式子的奇偶性。拆开:\(\overline{x_mx_{m-1}\ldots x_j} = \sum \limits _ {k = j} ^ {m} 5 ^ {k - j} x_k\),而 \(5 \bmod 2 = 1\),故上式与 \(\sum \limits _ {k = j} ^ {m} x_k\) 同奇偶。接下来继续化式子。

\[\begin{aligned}
ans &= \sum _ {i = 0} ^ {n} \Bigg [ 2 \mid \sum _ {j = 1} ^ {\infty} \Big \lfloor \cfrac{i}{5 ^ j} \Big \rfloor \Bigg ] \\
&= \sum _ {i = 0} ^ {n} \Bigg [ 2 \mid \sum _ {j = 1} ^ {m} \sum \limits _ {k = j} ^ {m} x_k \Bigg ] \\
&= \sum _ {i = 0} ^ {n} \Bigg [ 2 \mid \sum _ {j = 1} ^ {m} x_j \times j \Bigg ] \\
&= \sum _ {i = 0} ^ {n} \Bigg [ 2 \mid \sum _ {j = 1 \land j \bmod 2 = 1} ^ {m} x_j \Bigg ] \\
\end{aligned}
\]

也即,\(n!\) 某位有偶数个 \(0\),等价于其在 \(5\) 进制表示下,奇数位的和能否被 \(2\) 整除。答案就是 \(0 \sim n\) 中,在 \(5\) 进制表示下,奇数位的和能被 \(2\) 整除的数字的个数。这个使用数位 DP 即可。状态记录剩余几位、目前奇数位的和被 \(2\) 除的余数。

代码

#include <cstdio>

long long n, f[30][2];
int yzh[30], len; long long dp(int len, bool limit, bool sum) {
if (!~len) return !sum;
if (!limit && f[len][sum]) return f[len][sum];
long long res = 0;
for (int i = limit ? yzh[len] : 4; ~i; --i)
res += dp(len - 1, limit && i == yzh[len], (len & 1) ? (sum ^ (i & 1)) : sum);
if (!limit) f[len][sum] = res;
return res;
} inline long long solve() {
for (len = -1; n; yzh[++len] = n % 5, n /= 5);
return dp(len, true, 0);
} signed main() {
while (scanf("%lld", &n), ~n) printf("%lld\n", solve());
return 0;
}

Odd and Even Zeroes 题解的更多相关文章

  1. UVALive - 6575 Odd and Even Zeroes 数位dp+找规律

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48419 Odd and Even Zeroes Time Limit: 3000MS 问题描述 In mat ...

  2. UVA 12683 Odd and Even Zeroes(数学—找规律)

    Time Limit: 1000 MS In mathematics, the factorial of a positive integer number n is written as n! an ...

  3. Lintcode373 Partition Array by Odd and Even solution 题解

    [题目描述] Partition an integers array into odd number first and even number second. 分割一个整数数组,使得奇数在前偶数在后 ...

  4. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  5. 【HackerRank】Find the Median(Partition找到数组中位数)

    In the Quicksort challenges, you sorted an entire array. Sometimes, you just need specific informati ...

  6. 算法与数据结构基础 - 链表(Linked List)

    链表基础 链表(Linked List)相比数组(Array),物理存储上非连续.不支持O(1)时间按索引存取:但链表也有其优点,灵活的内存管理.允许在链表任意位置上插入和删除节点.单向链表结构一般如 ...

  7. 算法与数据结构基础 - 双指针(Two Pointers)

    双指针基础 双指针(Two Pointers)是面对数组.链表结构的一种处理技巧.这里“指针”是泛指,不但包括通常意义上的指针,还包括索引.迭代器等可用于遍历的游标. 同方向指针 设定两个指针.从头往 ...

  8. 【读书笔记】Cracking the Code Interview(第五版中文版)

    导语 所有的编程练习都在牛客网OJ提交,链接: https://www.nowcoder.com/ta/cracking-the-coding-interview 第八章 面试考题 8.1 数组与字符 ...

  9. 题解 P2955 【[USACO09OCT]奇数偶数Even? Odd? 】

    很明显这题是个假入门! 小金羊一不小心点进题解发现了内幕 能看的出来都WA过Unsigned long long int 做题可以用Python,Python的变量虽然 强悍的不行! 但是我们可以用字 ...

  10. LeetCode题解之 Odd Even Linked List

    1.题目描述 2.问题分析 将链表拆分成两个,奇数节点形成一个链表,偶数节点形成另外一个链表,最后将偶数节点链表加在奇数节点链表后面. 3.代码 ListNode* oddEvenList(ListN ...

随机推荐

  1. C#如何创建一个可快速重复使用的项目模板

    写在前面 其实很多公司或者资深的开发都有自己快速创建项目的脚手架的,有的是魔改代码生成器实现,有的直接基于T4,RazorEngine等模板引擎打造:但无论如何,其最终目的其实就是搭建一个自定义项目模 ...

  2. python globals()[]将字符串转化类,并通过反射执行方法

    背景: 通过关键字设计ui自动化框架,将测试用例及其步骤存放到excel文件:其中步骤中包含了封装好的关键字方法,如打开浏览器.输入页面操作等,关键字保存的内容:具体类实例.方法 通过excel获取到 ...

  3. 【路径规划】OSQP曲线平滑 公式及代码

    参考与前言 apollo 代码:https://github.com/ApolloAuto/apollo/tree/master/modules/planning/math/smoothing_spl ...

  4. ubuntu 同时安装python2 和 python3 版本的 gunicorn

    前言 最近在学习使用 gunicorn 部署 flask 项目.发现使用 pip3 安装完 gunicorn后,如如果再使用 pip2 安装 gunicorn,后安装的 gunicorn 就会覆盖掉原 ...

  5. Springboot+Shiro+Mybatis+mysql实现权限安全认证

    Shiro是Apache 的一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.Shiro 主要分为两个部分就是认证和授权两部分 一.介绍 Subject代表了当前用户的安全操作 ...

  6. Linux-Cgroup V2 初体验

    本文主要记录 Linux Cgroup V2 版本基本使用操作,包括 cpu.memory 子系统演示. 1. 开启 Cgroup V2 版本检查 通过下面这条命令来查看当前系统使用的 Cgroups ...

  7. ECMA标准ECMAScript(JavaScript的一个标准)和C#

    2024 年 6 月 26 日,第 127 届 ECMA 大会正式批准了 ECMAScript 2024 语言规范,这意味着它现在正式成为最新 ECMAScript 标准.ECMAScript是ECM ...

  8. 怒肝半月!Python 学习路线+资源大汇总

    Python 学习路线 by 鱼皮. 原创不易,请勿抄袭,违者必究! 大家好,我是鱼皮,肝了十天左右的 Python 学习路线终于来了~ 和之前一样,在看路线前,建议大家先通过以下视频了解几个问题: ...

  9. [oeasy]python0086_ASCII_出现背景_1963年_DEC_PDP系列主机_VT系列终端

    编码进化 回忆上次内容 上次 回顾了 字符编码的新陈代谢 ibm 曾经的EBCDIC 由于 字符不连续 导致 后续 出现无数问题 随着 网络的发展 数据交换的 需要 原来的小隐患 现在 产生了 巨大问 ...

  10. [UE源码] 关于使用UE待改进的一些尝试

    UE从自己做了一款游戏后,发现了蓝图以及UE引擎本身的一些优缺点: 1.蓝图在一些简单的逻辑上书写方便,直观,而且编译速度快,但是也有一些其他问题: 结构体赋值后,无法二次修改 只有3种容器Array ...