Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

思路:卡精度;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e4+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; LL big[]={,,,,};
const LL T=(LL)<<; LL multi(LL a,LL b)
{
LL ans=;
while(b)
{
if(b&)
{
double judge=1.0*INF/ans;
if(a>judge) return -;
ans*=a;
}
b>>=;
if(a>T&&b>) return -;
a=a*a;
}
return ans;
} LL findd(LL x,LL k)
{
LL r=(LL)pow(x,1.0/k);
LL t,p;
p=multi(r,k);
if(p==x) return r;
if(p>x||p==-) r--;
else
{
t=multi(r+,k);
if(t!=-&&t<=x) r++;
}
return r;
}
LL dp[];
LL xjhz(LL x)
{
memset(dp,,sizeof(dp));
dp[]=x-;
for(int i=;i<=;i++)
{
int s=,e=big[i],ans=-;
while(s<=e)
{
int mid=(s+e)>>;
if(multi(mid,i)<=x)
{
ans=mid;
s=mid+;
}
else e=mid-;
}
if(ans!=-)dp[i]=ans-;
}
for(int i=;i<=;i++)
{
dp[i]=findd(x,i)-;
}
for(int i=;i>=;i--)
{
for(int j=i+i;j<=;j+=i)
dp[i]-=dp[j];
}
LL out=;
for(int i=;i<=;i++)
out+=1LL*i*dp[i];
return out;
}
int main()
{
LL l,r;
while(~scanf("%lld%lld",&l,&r))
{
if(l==&&r==)break;
printf("%lld\n",xjhz(r)-xjhz(l-));
}
return ;
}

Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2291    Accepted Submission(s): 516

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

hdu 3208 Integer’s Power 筛法的更多相关文章

  1. HDU 3208 Integer’s Power

    Integer’s Power Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origina ...

  2. 【HDOJ】3208 Integer’s Power

    1. 题目描述定义如下函数$f(x)$:对于任意整数$y$,找到满足$x^k = y$同时$x$最小并的$k$值.所求为区间$[a, b]$的数代入$f$的累加和,即\[\sum_{x=a}^{b} ...

  3. Integer’s Power HDU - 3208(容斥原理)

    找出(l,r)内的所有的指数最大的次方和 因为一个数可能可以看成a^b和c^d,所以我需要去重,从后往前枚举幂数,然后找可以整除的部分,把低次幂的数去掉. 然后开n方的部分,先用pow()函数找到最接 ...

  4. HDU Integer's Power(容斥原理)

    题意 求[l,r]的最大指数和(1<=l,r<=10^18) 最大指数和(如64=8^2=4^3=2^6,所以64的最大指数和是6) 题解 很明显我们可以先求出[1,n]的最大指数和,然后 ...

  5. hdu 1047 Integer Inquiry

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1047 Integer Inquiry Description One of the first use ...

  6. hdu 6034 B - Balala Power! 贪心

    B - Balala Power! 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6034 题面描述 Talented Mr.Tang has n st ...

  7. HDU 4461:The Power of Xiangqi(水题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4461 题意:每个棋子有一个权值,给出红方的棋子情况,黑方的棋子情况,问谁能赢. 思路:注意“ if a play ...

  8. hdu acm-1047 Integer Inquiry(大数相加)

    Integer Inquiry Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. HDU 4658 Integer Partition(整数拆分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4658 题意:给出n.k.求n的拆分方案数.要求拆分中每个数不超过k. i64 f[N]; void i ...

随机推荐

  1. 使用BenchmarkSQL测试PostgreSQL

    BenchmarkSQL是一款经典的开源数据库测试工具,内嵌了TPCC测试脚本,可以对EnterpriseDB.PostgreSQL.MySQL.Oracle以及SQL Server等数据库直接进行测 ...

  2. scala 操作hdfs

    获取hdfs文件下所有文件getAllFiles 遍历 spark读取 1 package com.spark.demo import java.io.IOException import java. ...

  3. Ubuntu16.04+cuda8.0rc+opencv3.1.0+caffe+Theano+torch7搭建教程

    https://blog.csdn.net/jywowaa/article/details/52263711 学习中用到深度学习的框架,需要搭建caffe.theano和torch框架.经过一个月的不 ...

  4. log4j2笔记 #03# PatternLayout

    该类的目标是格式化LogEvent并返回(字符串)结果.结果的格式取决于具体的模式字符串(pattern string).这里的模式字符串与c语言中printf函数的转换模式非常相似.模式字符串由“转 ...

  5. linux 安装 ImageMagick 和 imagick 扩展

    使用命令安装 1.依次运行以下命令 yum install ImageMagick yum install ImageMagick-devel yum install php-pear 安装php-p ...

  6. jQuery操作下拉框的text值和val值

    jQuery操作下拉框的text值和val值 1,JS源码 <select name="select1" id="select1" style=" ...

  7. gdb远程debug A syntax error in expression, near `variable)'.

    今天调试有个linux环境的应用时,gdb提示A syntax error in expression, near `variable)'.,最后经查,gdb版本过低(比如7.2)或者源代码不匹配所致 ...

  8. jar中META-INF

    一直记得META-INF中只有在直接启动jar可执行文件时需要在manifest中配置启动类,最近看dubbo的配置,发现dubbo的配置都丢在META-INF下,特地搜索了下,官网对于META-IN ...

  9. dubbo-集群容错

    在集群调用失败时,Dubbo 提供了多种容错方案,缺省为 failover 重试. 各节点的关系: 这里的 Invoker 是 Provider 的一个可调用 Service 的抽象,Invoker  ...

  10. 快速阅读《QT5.9 c++开发指南》2

    1.sample2_2 信号和槽 MFC中最让人印象深刻的就是"消息映射",这里有理由相信,"信号和槽"是这种功能的发扬和扩展.通过简单的 connect(ui ...