Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

思路:卡精度;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e4+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; LL big[]={,,,,};
const LL T=(LL)<<; LL multi(LL a,LL b)
{
LL ans=;
while(b)
{
if(b&)
{
double judge=1.0*INF/ans;
if(a>judge) return -;
ans*=a;
}
b>>=;
if(a>T&&b>) return -;
a=a*a;
}
return ans;
} LL findd(LL x,LL k)
{
LL r=(LL)pow(x,1.0/k);
LL t,p;
p=multi(r,k);
if(p==x) return r;
if(p>x||p==-) r--;
else
{
t=multi(r+,k);
if(t!=-&&t<=x) r++;
}
return r;
}
LL dp[];
LL xjhz(LL x)
{
memset(dp,,sizeof(dp));
dp[]=x-;
for(int i=;i<=;i++)
{
int s=,e=big[i],ans=-;
while(s<=e)
{
int mid=(s+e)>>;
if(multi(mid,i)<=x)
{
ans=mid;
s=mid+;
}
else e=mid-;
}
if(ans!=-)dp[i]=ans-;
}
for(int i=;i<=;i++)
{
dp[i]=findd(x,i)-;
}
for(int i=;i>=;i--)
{
for(int j=i+i;j<=;j+=i)
dp[i]-=dp[j];
}
LL out=;
for(int i=;i<=;i++)
out+=1LL*i*dp[i];
return out;
}
int main()
{
LL l,r;
while(~scanf("%lld%lld",&l,&r))
{
if(l==&&r==)break;
printf("%lld\n",xjhz(r)-xjhz(l-));
}
return ;
}

Integer’s Power

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2291    Accepted Submission(s): 516

Problem Description
LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

For example, 9=3^2, 64=2^6, 1000=10^3 …

For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
It is very easy to find the power of an integer. For example:

The power of 9 is 2.
The power of 64 is 6.
The power of 1000 is 3.
The power of 99 is 1.
The power of 1 does not exist.

But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?

 
Input
The input consists of multiple test cases.
For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

End of input is indicated by a line containing two zeros.

 
Output
For each test case, output the sum of the power of the integers from a to b.
 
Sample Input
2 10
248832 248832
0 0
 
Sample Output
13
5
 
Source

hdu 3208 Integer’s Power 筛法的更多相关文章

  1. HDU 3208 Integer’s Power

    Integer’s Power Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origina ...

  2. 【HDOJ】3208 Integer’s Power

    1. 题目描述定义如下函数$f(x)$:对于任意整数$y$,找到满足$x^k = y$同时$x$最小并的$k$值.所求为区间$[a, b]$的数代入$f$的累加和,即\[\sum_{x=a}^{b} ...

  3. Integer’s Power HDU - 3208(容斥原理)

    找出(l,r)内的所有的指数最大的次方和 因为一个数可能可以看成a^b和c^d,所以我需要去重,从后往前枚举幂数,然后找可以整除的部分,把低次幂的数去掉. 然后开n方的部分,先用pow()函数找到最接 ...

  4. HDU Integer's Power(容斥原理)

    题意 求[l,r]的最大指数和(1<=l,r<=10^18) 最大指数和(如64=8^2=4^3=2^6,所以64的最大指数和是6) 题解 很明显我们可以先求出[1,n]的最大指数和,然后 ...

  5. hdu 1047 Integer Inquiry

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1047 Integer Inquiry Description One of the first use ...

  6. hdu 6034 B - Balala Power! 贪心

    B - Balala Power! 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6034 题面描述 Talented Mr.Tang has n st ...

  7. HDU 4461:The Power of Xiangqi(水题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4461 题意:每个棋子有一个权值,给出红方的棋子情况,黑方的棋子情况,问谁能赢. 思路:注意“ if a play ...

  8. hdu acm-1047 Integer Inquiry(大数相加)

    Integer Inquiry Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. HDU 4658 Integer Partition(整数拆分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4658 题意:给出n.k.求n的拆分方案数.要求拆分中每个数不超过k. i64 f[N]; void i ...

随机推荐

  1. JustOJ1500: 蛇行矩阵

    题目链接:https://oj.ismdeep.com/problem?id=1500 题目描述 蛇形矩阵是由1开始的自然数依次排列成的一个矩阵上三角形. 输入 本题有多组数据,每组数据由一个正整数N ...

  2. 模型(model-->orm)系统

    一.ORM介绍 1)ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过 ...

  3. MySql安装和基本管理

    一.什么是数据库? mysql就是一个基于socket编写的C/S架构的软件 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流 ...

  4. Spring 注入的两种方式

    Spring 的两种注入方式: 1. 属性注入:通过无参构造函数+setter方法注入 2. 构造注入:通过有参的构造函数注入. 优缺点: 1. 属性注入直白易懂,缺点是对于属性可选的时候,很多个构造 ...

  5. 每日linux命令学习-grep模式检索

    grep模式检索指令包括grep,egrep,和fgrep,.Linux系统使用正则表达式优化文本检索,所以在此,笔者首先学习了一下正则表达式. 1. 正则表达式 正则表达式使用被称为元字符(Meta ...

  6. 用Java实现MVPtree——MVPtree点集内去重以及衍生出来的多维向量Hash问题

    上次完成了MVPtree之后,客户又提出了MVPtree点集元素重复的问题,希望我将元素去重. 集合去重哪家强?java.util找HashSet!如果不计较元素顺序,放进去基本就没有重复元素了. 只 ...

  7. gdb远程debug A syntax error in expression, near `variable)'.

    今天调试有个linux环境的应用时,gdb提示A syntax error in expression, near `variable)'.,最后经查,gdb版本过低(比如7.2)或者源代码不匹配所致 ...

  8. memset与malloc性能测试(转)

    前一段跟同事聊项目组已有的一些工具,同事讲里面有太多的malloc与memset,对性能的影响比较大,因此今天就在自己的机器上测试了这两个函数,不多说,上数据.测试环境:2.2GHZ.2G内存mems ...

  9. 写给大忙人的nginx核心配置详解

    由于当前很多应该都是前后端分离了,同时大量的基于http的分布式和微服务架构,使得很多时候应用和不同项目组之间的系统相互来回调用,关系复杂.如果使用传统的做法,都在应用中进行各种处理和判断,不仅维护复 ...

  10. ml机器学习笔记

    一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...