算是学会反演了……(其实挺好学的一天就能学会……

原题:

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

反演嘛,直接推公式

(Atom和即时预览的latex插件真好用

(治好了我多年的公式恐惧症~~(模仿po姐

然后按照莫比乌斯反演经典的计算方法for(int i=1,j;i<=n;i=j+1)  j=min(n/(n/i),m/(m/i));O(√n*√n)=O(n)计算就可以了

需要注意的是因为计算过程中是在模意义下计算的,所以会出现负数(但是因为计算是在模意义下进行的所以答案确实是对的),最后需要加模数再取模

(反演其实挺好学的一天就能学会(就学个反演都拖了一年我以前真是钍氧钍砷钋熵钛镎铱钨

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define ll long long
const int mo=;
int rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
void wt(int x){if(x<) putchar('-'),x=-x;
int wtp=; char wtc[];
while(x) wtc[++wtp]=(x%)+'',x/=;
while(wtp) putchar(wtc[wtp--]);
}
int n,m;
int prm[],prp=,miu[]; bool prg[];
int s[];
void gtmiu(){
fill(prg+,prg+n+,);
miu[]=;
for(int i=;i<=n;++i){
if(!prg[i]) prm[++prp]=i,miu[i]=-;
for(int j=;j<=prp && i*prm[j]<=n;++j){
prg[i*prm[j]]=true;
if(!(i%prm[j])){ miu[i*prm[j]]=; break;}
miu[i*prm[j]]=-miu[i];
}
}
for(ll i=;i<=n;++i)
s[i]=(s[i-]+(i*i*miu[i])%mo)%mo;
}
ll sm(ll x,ll y){ return (((x*(x+)/)%mo)*((y*(y+)/)%mo))%mo;}
ll cclt(int x,int y){
if(x>y) swap(x,y);
ll bwl=;
for(ll i=,j;i<=x;i=j+){
j=min(x/(x/i),y/(y/i));
bwl=(bwl+((s[j]-s[i-])*sm(x/i,y/i))%mo)%mo;
}
return bwl;
}
int main(){//freopen("ddd.in","r",stdin);
cin>>n>>m;
if(n>m) swap(n,m);
gtmiu();
ll ans=;
for(ll i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans=(ans+(((i+j)*(j-i+)/)%mo*cclt(n/i,m/i))%mo)%mo;
}
cout<<(ans+mo)%mo<<endl;
return ;
}

【BZOJ2154】Crash的数字表格的更多相关文章

  1. BZOJ2154 Crash的数字表格 【莫比乌斯反演】

    BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...

  2. BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab

    [传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...

  3. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  4. BZOJ2154: Crash的数字表格

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...

  5. 【莫比乌斯反演】BZOJ2154 Crash的数字表格

    Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...

  6. bzoj千题计划253:bzoj2154: Crash的数字表格

    http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...

  7. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  8. [bzoj2154]Crash的数字表格(mobius反演)

    题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...

  9. 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab

    t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...

  10. 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    [BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...

随机推荐

  1. [Codeforces721E]Road to Home

    Problem 有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠. 有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续 ...

  2. HTML中元素的position属性详解

    HTML中元素的position属性详解 转载自:https://blog.csdn.net/wangzunkuan/article/details/81540935   HTML中DOM元素有5种定 ...

  3. nginx配置文件详解(三)

    nginx配置文件详细解析 nginx安装目录:  /usr/local/nginx 配置文件:  /usr/local/nginx/conf 目录下的 nginx.conf文件 nginx优化方法1 ...

  4. Win10访问不到XP共享的解决:

    不知道别人的是怎么解决. 反正我这么解决了. 我的win10笔记本,是使用windows帐户登陆的.可以同步很多东西. 同事的电脑是台式老古董XP. 扫描不到网上邻居,手动\\ip也访问不到. 最后安 ...

  5. 使用GCD控制网络请求

    当,当山峰没有棱角的时候 当河水不再流 当时间停住日夜不分 当天地万物化为虚有!,,,,不好意思跑题了! 当我们在一个页面中需要进行多次网络请求才能满足页面所有的显示需要的时候,我们需要控制这些请求全 ...

  6. pymongo 对mongoDB的操作

    #文档地址 http://api.mongodb.com/python/current/api/pymongo/collection.html collection级别的操作: find_and _m ...

  7. DevExpress WinForms使用教程:图表控件 - 内置深入查询

    [DevExpress WinForms v18.2下载] 在最新发布的DevExpress WinForms v18.2中,DevExpress WinForms和ASP.NET图表控件引入嵌套系列 ...

  8. android-DNS服务找不到

    1.重启eclipse 2.重新建立AVD 3.在建立AVD时sd卡数值不要填

  9. python+appium+yaml安卓UI自动化测试分享

    一.实现数据与代码分离,维护成本较低,先看看自动化结构,大体如下: testyaml管理用例,实现数据与代码分离,一个模块一个文件夹 public 存放公共文件,如读取配置文件.启动appium服务. ...

  10. golang统计出其中英文字母、空格、数字和其它字符的个数

    方法一 通过ASCII码表判断并统计 package main import "fmt" func charactortype() { var s2 string = " ...