原题传送门

这题需要运用莫比乌斯反演(懵逼钨丝繁衍)

我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数

我们珂以跟容斥原理(二维前缀和)一样来求答案:

设\(solve(x,y,k)\)表示对于区间\([1,x]\)内的整数x和\([1,y]\)内的y,满足\(gcd(x,y)=k\)的数对的个数

那么答案\(ans=solve(b,d,k)-solve(a-1,d,k)-solve(b,c-1,k)+solve(a-1,c-1,k)\)

那么solve怎么写呢?

设F(n)表示满足\(gcd(x,y)\%t=0\)的数对个数,f(t)表示满足\(gcd(x,y)=t\)的数对个数,实际上答案就是f(k)

这就满足莫比乌斯反演的关系式了

显然我们珂以得知\(F(t)=(b/t)*(d/t)\)

我们根据反演的第二个公式便珂以得出

$$f(k)=\sum_{n|k}\mu(\frac{k}{n})F(k)$$

再加上整除分块就珂以了

#include <bits/stdc++.h>
#define N 50005
#define ll long long
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register ll x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
int miu[N],v[N],sum[N];
inline ll solve(register int a,register int b,register int k)
{
int maxround=Min(a/k,b/k);
ll ans=0;
for(register int l=1,r;l<=maxround;l=r+1)
{
r=Min((a/k)/((a/k)/l),(b/k)/((b/k)/l));
ans+=(ll)((a/k)/l)*((b/k)/l)*(sum[r]-sum[l-1]);
}
return ans;
}
int main()
{
for(register int i=1;i<=N;++i)
miu[i]=1,v[i]=0;
for(register int i=2;i<=N;++i)
{
if(v[i])
continue;
miu[i]=-1;
for(register int j=i<<1;j<=N;j+=i)
{
v[j]=1;
if((j/i)%i==0)
miu[j]=0;
else
miu[j]*=-1;
}
}
for(register int i=1;i<=N;++i)
sum[i]=sum[i-1]+miu[i];
int t=read();
while(t--)
{
int a=read()-1,b=read(),c=read()-1,d=read(),k=read();
ll ans=solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k);
write(ans),puts("");
}
return 0;
}

【题解】Luogu P2522 [HAOI2011]Problem b的更多相关文章

  1. Luogu P2522 [HAOI2011]Problem b

    如果你做过[Luogu P3455 POI2007]ZAP-Queries就很好办了,我们发现那一题求的是\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\),就是这道题 ...

  2. Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演

    设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...

  3. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  4. 洛谷P2522 - [HAOI2011]Problem b

    Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...

  5. [luogu] P2519 [HAOI2011]problem a (贪心)

    P2519 [HAOI2011]problem a 题目描述 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同 ...

  6. Luogu P2519 [HAOI2011]problem a

    题目链接 \(Click\) \(Here\) \(DP\)神题.以后要多学习一个,练一练智商. 关键点在于把"有\(a_i\)个人分数比我高,\(b_i\)个人分数比我低"这句话 ...

  7. P2522 [HAOI2011]Problem b

    还有三倍经验的吗(窒息) 思路 其实就是P3455套了个简单的容斥 把问题转化成f(n,m,k)-f(a-1,m,k)-f(n,b-1,k)+f(a-1,b-1,k)就可以了 和p3455几乎一样的代 ...

  8. 题解【bzoj2301 [HAOI2011]Problem b】

    Description 求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd ...

  9. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...

随机推荐

  1. 10 Free Image Hosting Sites for Your Photos

    https://www.lifewire.com/free-image-hosting-sites-3486329 Wondering if there are there any good site ...

  2. itemscope itemtype="http://schema.org/AggregateRating"

    Review Canonical URL: http://schema.org/Review Thing > CreativeWork > Review A review of an it ...

  3. GO linux LiteIDE

    GO 有个IDE开发环境,还是挺不错的 要明确一下,GO主要还是服务器端语言,所以,这里只以linux为例来说明安装和使用 一. 下载https://www.golangtc.com/download ...

  4. iOS 正则表达式(二) RegexKitLite使用

    下面介绍的是iOS的一个第三方库,RegexKitLite .使用起来是非常方便的,不过是2008年写的,MAC模式,我们在使用的时候,需要作两步操作. RegexKitLite 导入 我们在gith ...

  5. 下拉列表控件实例 ComboBoxControl

    下拉列表控件实例 书:151页 <?xml version="1.0" encoding="utf-8"?> <s:Application x ...

  6. linux df查看硬盘使用量 du查看文件所占大小

    df 常用来查看磁盘的占用情况. du 常用来查看文件夹的大小等. Linux命令: df  [-ahikHTm]  [目录或者文件夹] 参数: -h : 以交较易识别的方式展示使用量  111100 ...

  7. Java之.jdk安装-Linux

    Jdk安装-Linux 1. 使用管理员,创建一个用户(charles),指令:useradd charles 2. 给创建的用户,添加密码(密码自己指定),指令:passwd charles 注意: ...

  8. LeetCode155.最小栈

    设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中. pop() -- 删除栈顶的元素. top() -- 获取栈顶元素. ...

  9. kali linux android木马(内网+外网)

    1,内网木马 先生成一个小马 msfpayload -p android/meterpreter/reverse_tcp LHOST=192.168.8.104 LPORT=5555 R > a ...

  10. 20155228 基于VirtualBox安装Ubuntu和学习linux命令的学习经历和心得

    一.虚拟机VirtualBox的下载安装 基于VirtualBox虚拟机安装Ubuntu图文教程 虽然娄老师的教程对于VirtualBox的下载安装讲的很简单,可以说是一笔带过,但是我在下载安装的过程 ...