poj 1275 Cashier Employment - 差分约束 - 二分答案
A supermarket in Tehran is open 24 hours a day every day and needs a number of cashiers to fit its need. The supermarket manager has hired you to help him, solve his problem. The problem is that the supermarket needs different number of cashiers at different times of each day (for example, a few cashiers after midnight, and many in the afternoon) to provide good service to its customers, and he wants to hire the least number of cashiers for this job.
You are to write a program to read the R(i) 's for i=0..23 and ti 's for i=1..N that are all, non-negative integer numbers and compute the least number of cashiers needed to be employed to meet the mentioned constraints. Note that there can be more cashiers than the least number needed for a specific slot.
Input
Output
If there is no solution for the test case, you should write No Solution for that case.
Sample Input
1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5
0
23
22
1
10
Sample Output
1
题目大意
一个超市在第$i$小时中工作的员工数目不能少于$req[i]$个。有$n$个应聘的人,第$i$个人愿意从$t_{i}$开始工作8小时,问最少需要聘请多少人才能使得达到要求。
设$x_{i}$表示第$i$个小时中开始工作的员工数目。为了表示八个小时内的员工数目,定义$s_{i} = x_{0} + \cdots + x_{i - 1}$。用$own[i]$表示愿意从时刻$i$开始工作的人数
于是便有如下一些不等式:
- $0 \leqslant s_{i} - s_{i - 1} \leqslant own[i - 1]$
- $\left\{\begin{matrix}s_{i} - s_{i - 8}\geqslant req[i - 1]\ \ \ \ \ \ \ \ \ \ \left ( i \geqslant 8 \right ) \\ s_{16 + i} - s_{i}\leqslant s_{24} - req[i - 1]\ \left ( i \leqslant 8 \right )\end{matrix}\right.$
但是发现第二个不等式组中的第二个不等式含有3个未知量,即$s_{24}$,但是总共就只有这么一个,可以考虑枚举它。
显然答案满足二分性质,所以二分它,增加限制$s_{24} = mid$。
Code
/**
* poj
* Problem#1275
* Accepted
* Time: 16ms
* Memory: 672k
*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
typedef bool boolean; const int N = ; int T;
int n;
int req[N], own[N];
int g[N][N];
int f[N];
int lab[N];
boolean vis[N]; inline void init() {
for (int i = ; i < ; i++)
scanf("%d", req + i);
scanf("%d", &n);
memset(own, , sizeof(own));
for (int i = , x; i <= n; i++) {
scanf("%d", &x);
own[x]++;
}
} queue<int> que;
inline boolean check(int mid) {
for (int i = ; i < ; i++)
g[ + i][i] = req[i - ] - mid;
g[][] = mid;
g[][] = -mid;
fill(f, f + , -);
memset(lab, , sizeof(lab));
que.push();
f[] = ;
while (!que.empty()) {
int e = que.front();
que.pop();
vis[e] = false;
if (++lab[e] >= ) return false;
for (int i = ; i < ; i++)
if (g[e][i] >= - && f[e] + g[e][i] > f[i]) {
f[i] = f[e] + g[e][i];
if (!vis[i]) {
que.push(i);
vis[i] = true;
}
}
}
// for (int i = 0; i <= 24; i++)
// cerr << f[i] << " ";
// cerr << endl;
return true;
} inline void solve() {
memset(g, 0x80, sizeof(g));
for (int i = ; i < ; i++)
g[i][i + ] = , g[i + ][i] = -own[i];
for (int i = ; i <= ; i++)
g[i - ][i] = req[i - ];
int l = , r = n;
while (l <= r) {
int mid = (l + r) >> ;
if (check(mid))
r = mid - ;
else
l = mid + ;
}
if (r == n)
puts("No Solution");
else
printf("%d\n", r + );
} int main() {
scanf("%d", &T);
while(T--) {
init();
solve();
}
return ;
}
poj 1275 Cashier Employment - 差分约束 - 二分答案的更多相关文章
- hdu1529 Cashier Employment[差分约束+二分答案]
这题是一个类似于区间选点,但是有一些不等式有三个未知量参与的情况. 依题意,套路性的,将小时数向右平移1个单位后,设$f_i$为前$i$小时工作的人数最少是多少,$f_{24}$即为所求.设$c_i$ ...
- POJ 1275 Cashier Employment(差分约束)
http://poj.org/problem?id=1275 题意 : 一家24小时营业的超市,要雇出纳员,需要求出超市每天不同时段需要的出纳员数,午夜只需一小批,下午需要多些,希望雇最少的人,给出每 ...
- POJ 1275 Cashier Employment 挺难的差分约束题
http://poj.org/problem?id=1275 题目大意: 一商店二十四小时营业,但每个时间段需求的雇员数不同(已知,设为R[i]),现有n个人申请这份工作,其可以从固定时间t连续工作八 ...
- 图论(差分约束系统):POJ 1275 Cashier Employment
Cashier Employment Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7651 Accepted: 288 ...
- 【POJ1275】Cashier Employment 差分约束
[POJ1275]Cashier Employment 题意: 超市经历已经提供一天里每一小时需要出纳员的最少数量————R(0),R(1),...,R(23).R(0)表示从午夜到凌晨1:00所需要 ...
- POJ1275/ZOJ1420/HDU1529 Cashier Employment (差分约束)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题意:一商店二十四小时营业,但每个时间段需求的出纳员不同,现有n个人申请这份工作, ...
- HDU.1529.Cashier Employment(差分约束 最长路SPFA)
题目链接 \(Description\) 给定一天24h 每小时需要的员工数量Ri,有n个员工,已知每个员工开始工作的时间ti(ti∈[0,23]),每个员工会连续工作8h. 问能否满足一天的需求.若 ...
- poj 1275 Cashier Employment
http://poj.org/problem?id=1275 #include <cstdio> #include <cstring> #include <algorit ...
- Cashier Employment 差分约束
题意:有一个超市需要一些出纳员,已给出这个超市在各个时间段(0-1,1-2,2-3...共24个时间段)至少需要的出纳员数目,现在前来应聘有n个人,每个人都有一个固定的开始工作的时间,这也意味着从这个 ...
随机推荐
- for in //for of //forEach //map三种对比
遍历Array可以采用下标循环,遍历Map和Set就无法使用下标.为了统一集合类型,ES6标准引入了新的iterable类型,Array.Map和Set都属于iterable类型. 具有iterabl ...
- python selenium截取指定元素图片
1.截取当前屏幕 @property def getImage(self): ''' 截取图片,并保存在images文件夹 :return: 无 ''' timestrmap = time.strft ...
- SSH异常处理(一)
Could not locate getter method for property [com.test_SSH.Employee#createTime] 这个异常是实体类没有映射到对应的.hbm. ...
- c# Mongodb批量更新
public void Put(List<OnlineItem> datas) { try { ...
- ip and port check 正则
在网页开发中可能会遇到需要对在页面输入的ip和端口进行正确性验证,那么正则表达式就是最有力的工具: 1:ip的正则表达式: 格式是由“.”分割的四部分,每部分的范围是0-255: 每段的正则可以分几部 ...
- PHP面向对象构造和析构函数
一.构造函数 用来生成对象的函数 <?php class Ren{ public $name; public $sex;//性别是人一出生就知道的,可以用构造函数来定义 /*public fun ...
- Python全栈-day8-day9-函数1
函数 day8 1.为什么需要函数 1)代码的组织结构不清晰,可读性差 2)需要重复使用某个功能时,需要重新编写成程序,重复率高 3)多处引用相同代码时,需要扩展功能的时候过于麻烦,工作量大 2.函数 ...
- jQuery属性--attr(name|properties|key,value|fn)和removeAttr(name)
attr(name|properties|key,value|fn) 概述 设置或返回被选元素的属性值 参数 key,function(index, attr) 1:属性名称:2:返回 ...
- 文件格式(图像 IO 14.3)
文件格式 图片加载性能取决于加载大图的时间和解压小图时间的权衡.很多苹果的文档都说PNG是iOS所有图片加载的最好格式.但这是极度误导的过时信息了. PNG图片使用的无损压缩算法可以比使用JPEG的图 ...
- 开源词袋模型DBow3原理&源码(二)ORB特征的保存和读取
util里提供了create_voc_step0用于批量生成features并保存,create_voc_step1读入features再生成聚类中心,比较适合大量语料库聚类中心的生成. 提取一张图的 ...