链接:http://poj.org/problem?id=1655

Time Limit: 1000MS Memory Limit: 65536K

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T.
For example, consider the tree:

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

题意:

给出一棵 $N$ 个节点(编号为 $1 \sim N$)的树。

对于树上某一个节点 $x$,如果我们把它从树中删除,那么原来的一棵树就可能会变成若干棵树,或者说,一个森林;

设 ${\rm{maxpart}}(x)$ 为该森林中节点最多的那一棵树的大小。那么,使得 ${\rm{maxpart}}(x)$ 取得最小值的节点就称为树的重心。

本题要求给出树的重心的编号(如果有多个重心,则给出其中编号最小的),以及其对应的 ${\rm{maxpart}}(x)$。

题解:

实际上,一次DFS就可以求得重心和对应的 ${\rm{maxpart}}(x)$。

如图,节点 $4$ 就是这棵树的重心,且 ${\rm{maxpart}}(4) = \max(n-size[4],size[4],size[6])$。

(图片转载自李煜东《算法竞赛进阶指南》

AC代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=2e4+; int n; struct Edge{
int u,v;
Edge(int _u=,int _v=){u=_u,v=_v;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v)
{
E.push_back(Edge(u,v));
G[u].push_back(E.size()-);
} int siz[maxn],vis[maxn];
pair<int,int> center;
void dfs(int now)
{
vis[now]=; siz[now]=;
int maxpart=;
for(int i=;i<G[now].size();i++)
{
Edge &e=E[G[now][i]]; int nxt=e.v;
if(vis[nxt]) continue;
dfs(nxt);
siz[now]+=siz[nxt];
maxpart=max(maxpart,siz[nxt]);
}
maxpart=max(maxpart,n-siz[now]);
if(maxpart<center.first || (maxpart==center.first && now<center.second))
{
center.first=maxpart;
center.second=now;
}
} int main()
{
int T;
cin>>T;
while(T--)
{
scanf("%d",&n);
init(,n);
for(int i=,u,v;i<n;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
} center=make_pair(INF,);
memset(vis,,sizeof(vis));
dfs();
printf("%d %d\n",center.second,center.first);
}
}

POJ 1655 - Balancing Act - [DFS][树的重心]的更多相关文章

  1. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  2. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  3. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  4. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  5. POJ 1655 Balancing Act (树的重心,常规)

    题意:求树的重心,若有多个重心,则输出编号较小者,及其子树中节点最多的数量. 思路: 树的重心:指的是一个点v,在删除点v后,其子树的节点数分别为:u1,u2....,设max(u)为其中的最大值,点 ...

  6. POJ 1655 Balancing Act ( 树的重心板子题,链式前向星建图)

    题意: 给你一个由n个节点n-1条边构成的一棵树,你需要输出树的重心是那个节点,以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的 题解: 树的重心定义:找到一个点,其所 ...

  7. POJ 1655 Balancing Act (求树的重心)【树形DP】(经典)

    <题目链接> 题目大意:给你一棵树,任意去除某一个点后,树被分成了几个联通块,则该点的平衡值为所有分成的连通块中,点数最大的那个,问你:该树所有点中,平衡值最小的那个点是什么? 解题分析: ...

  8. POJ 1655 Balancing Act 焦点树

    标题效果:鉴于一棵树.除去一个点之后,这棵树将成为一些中国联通的块.之后该点通过寻求取消最低形成块的最大数目. 思维:树DP思维.通过为每个子树尺寸的根节点深搜索确定.之后该节点然后除去,,还有剩下的 ...

  9. POJ 1655 Balancing Act (树状dp入门)

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

随机推荐

  1. Git 安装(分布式版本控制系统)

    1.在 Windows 上安装 在 Windows 上安装 Git 也有几种安装方法. 官方版本可以在 Git 官方网站下载,打开下载会自动开始.要注意这是一个名为 Git for Windows 的 ...

  2. MySQL -- Innodb中的change buffer

    change buffer是一种特殊的数据结构,当要修改的辅助索引页不在buffer pool中时,用来cache对辅助索引页的修改.对辅助索引页的操作可能是insert.update和delete操 ...

  3. [svc]cfssl模拟https站点-探究浏览器如何校验证书

    准备cfssl环境 wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl wget https://pkg ...

  4. 【Spark 深入学习 -09】Spark生态组件及Master节点HA

    ----本节内容------- 1.Spark背景介绍 2.Spark是什么 3.Spark有什么 4.Spark部署 4.1.Spark部署的2方面 4.2.Spark编译 4.3.Spark St ...

  5. 《转》vue更新到2.0之后vue-resource不在更新,axios的使用

    vue更新到2.0之后,作者就宣告不再对vue-resource更新,而是推荐的axios,前一段时间用了一下,现在说一下它的基本用法. 首先就是引入axios,如果你使用es6,只需要安装axios ...

  6. 登录tomcat服务器首页直接跳转到项目

    原文:https://www.cnblogs.com/xwdreamer/p/3489996.html 需求: 客户觉得每次输入http://10.138.16.232:8080/abc/ 比较烦,他 ...

  7. JavaScript反向shell

    Node.js反向Shell 摘自:http://www.itfang.net/?p=109 如下的Javascript就是一个Node.js的反向连接shell. 这个payload将会生成一个/b ...

  8. dhcp server 移植记录

    这次移植 WIFI ,需要做成 AP 模式,所以,需要移植 dhcp 服务端 busybox 里面自带 udhcpd 选项. 打开buildroot , make busybox-menuconfig ...

  9. STM32云平台连接培训20180814

    MQTT基于TCP,发布订阅模式,一对多,多对一,TCP需要client主动建立connect,server发送connectack CoAP基于UDP,请求/应答模式,数据量也相对HTTP要小 HT ...

  10. 阿里巴巴面试之利用两个int值实现读写锁

    首先我们对读写锁做一个概述: 假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资 ...