cross_val_score(model_name, x_samples, y_labels, cv=k)

作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度。

K折交叉验证(k-fold)

把初始训练样本分成k份,其中(k-1)份被用作训练集,剩下一份被用作评估集,这样一共可以对分类器做k次训练,并且得到k个训练结果。

 from sklearn.model_selection import cross_val_score
clf = sklearn.linear_model.LogisticRegression()
# X:features y:targets cv:k
cross_val_score(clf, X, y, cv=5)

模型的训练、预测和评价

 def svm_model():
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.svm import SVC
# 模型训练
clf = SVC(kernel='linear')
clf.fit(x_train_samples, y_train_labels)
# 模型存储
joblib.dump(clf, './model/svm_mode.pkl')
# 模型评估
predict_labels = clf.predict(x_test_samples)
Accuracy = accuracy_score(y_test_labels, predict_labels)
Precision = precision_score(y_test_labels, predict_labels, pos_label=0)
Recall = recall_score(y_test_labels, predict_labels, pos_label=0)
F1_scores = f1_score(y_test_labels, predict_labels, pos_label=0)

整个过程结束。需要说明的是调用K折交叉验证,结果输出的是准确率,其它的指标不会输出。所以,建议还是前期,使用train_test_split()函数划分训练集和验证集,后期根据实际需求评估模型

机器学习使用sklearn进行模型训练、预测和评价的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  2. 使用tensorflow进行mnist数字识别【模型训练+预测+模型保存+模型恢复】

      import sys,os sys.path.append(os.pardir) import numpy as np from tensorflow.examples.tutorials.mni ...

  3. 用python+sklearn(机器学习)实现天气预报数据 模型和使用

    用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...

  4. 使用sklearn进行数据挖掘-房价预测(6)—模型调优

    通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工 ...

  5. 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)

    本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26  ...

  6. 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练

    背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...

  7. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  8. 用交叉验证改善模型的预测表现-着重k重交叉验证

    机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“). 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系 ...

  9. 机器学习总结-sklearn参数解释

    本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...

随机推荐

  1. 详述socket编程之select()和poll()函数

    转自:http://www.cppblog.com/myjfm/archive/2011/10/26/159093.aspx select()函数和poll()函数均是主要用来处理多路I/O复用的情况 ...

  2. SNFAutoupdater通用自动升级组件V2.0

    1.组件介绍 C/S构的特点是能充分发挥客户端的处理能力,很多工作可以由客户端处理后再提交给服务器,对应的优点就是客户端响应速度快模式客户端以其强大的功能,丰富的表现力受到相当大部分用户的青睐,但是客 ...

  3. FFmpeg: AVCodecParameters 结构体分析

    /** * This struct describes the properties of an encoded stream. * * sizeof(AVCodecParameters) is no ...

  4. 【Linux高级驱动】网卡驱动分析

    两个重要的结构体简单介绍 *sk_buff 如果把网络传输看成是运送货物的话,那么sk_buff就是这个“货物”了,所有经手这个货物的人都要干点什么事儿,要么加个包装,要么印个戳儿等等.收货的时候就要 ...

  5. 一些jquery特效收集

    jQuery幻灯片插件带投影的图片叠加切换幻灯片轮播 特效:http://www.jsfoot.com/jquery/images/ jquery文字滚动上下间歇文字滚动 http://www.17s ...

  6. ( 转 )超级惊艳 10款HTML5动画特效推荐

    今天我们要来推荐10款超级惊艳的HTML5动画特效,有一些是基于CSS3和jQuery的,比较实用,特别是前几个HTML5动画,简直酷毙了,现在将它们分享给大家,也许你能用到这些HTML5动画和jQu ...

  7. vmware-hostd.exe 占用443端口导致Apache无法正常启动?

    问题: [Apache]  Problem detected!16:23:19  [Apache]  Port 443 in use by ""D:\vmware\VMware W ...

  8. Spark学习笔记——读写MySQL

    1.使用Spark读取MySQL中某个表中的信息 build.sbt文件 name := "spark-hbase" version := "1.0" scal ...

  9. Eclipse 中修改tomcat设置内存大小

    修改1: 在Eclipse中下面Servers双击Tomcat Server... 然后点击General InformAtion 下的Open launch configuration: 会弹出Ed ...

  10. 修改git用户密码

    第一步:登录git服务器: 第二步:切换到git用户 su git 第三步:登录GitLab的Rails控制台(GitLab使用RoR语言开发), gitlab-rails console produ ...