题意:

把一个图分成两部分,要把点1和点2分开。隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边。这题很明显是最小割,也就是最大流。把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边。

思路:

最小割,就是在所有割中,容量之和最小的割,这就是我的理解,而最小割的值就是最大流的值,因为很容易想到,从源点s到汇点t的最大流必然会经过割边,那么就有最大流f<=c(割边的值),那么也就是说,当c==f的时候,就是c为小割,即最大流==最小割。第二点,怎么求出最小割的边:在求出最大流之后,残余网络会分成两个部分,和源点相连的是一个集合,和汇点相连的是另一个集合,然后用a表示从源点到其他各点的最大流,在求出最大流之后,a>0 的就在源点集合中,反之为0的就在汇点集合中。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f; int n, m, g[N][N],flow[N][N];
int p[N], a[N], x[M], y[M], f; int maxflow()
{
queue <int> q;
memset( flow, , sizeof(flow));
f = ;
while ( )
{
memset( a, , sizeof(a) );
a[] = inf;
q.push();
while ( !q.empty() )
{
int u = q.front(); q.pop();
for ( int v = ; v <= n; ++v )
if ( !a[v] && flow[u][v] < g[u][v] )
{
p[v] = u;
a[v] = min( a[u], g[u][v] - flow[u][v] );
q.push(v);
}
}
if ( a[] == ) break;
for ( int u = ; u != ; u = p[u] )
{
flow[p[u]][u] += a[];
flow[u][p[u]] -= a[];
}
f += a[];
}
return f;
} int main()
{
while(cin>>n>>m,n,m)
{
memset( g, , sizeof(g) );
for ( int i = ; i < m; ++i )
{
int s, e, c;
cin>>s>>e>>c;
x[i] = s, y[i] = e;
g[s][e] = g[e][s] = c;
}
maxflow();
for ( int i = ; i < m; ++i )
{
if( ( !a[x[i]] && a[y[i]] ) || ( a[x[i]] && !a[y[i]] ) )
cout<<x[i]<<" "<<y[i]<<endl;
}
cout<<endl;
}
return ;
}

UVA - 10480 Sabotage【最小割最大流定理】的更多相关文章

  1. UVA - 10480 Sabotage 最小割,输出割法

    UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...

  2. 最小割最大流定理&残量网络的性质

    最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...

  3. UVA 10480 Sabotage (最大流最小割)

    题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...

  4. UVA10480 Sabotage —— 最小割最大流

    题目链接:https://vjudge.net/problem/UVA-10480 题解: 实际就是求最小割集. 1.什么是网络流图的“割”?答:一个边的集合,使得网络流图删除这些边之后,点被分成两部 ...

  5. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  6. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  7. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  8. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  9. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

随机推荐

  1. 重温Delphi之:面向对象

    任何一门语言,只要具备了"封装,继承,多态"这三项基本能力,不管其实现方式是直接或曲折.复杂或简洁,就可以称之为“面向对象”的语言. Delphi当年的迅速走红,是以其RAD快速开 ...

  2. map内置函数分析所得到的思路

    map:会根据提供的函数对指定序列做映射. map(func, *iterables) --> map object Make an iterator that computes the fun ...

  3. MyBatis:一对一关联查询

    MyBatis从入门到放弃三:一对一关联查询 前言 简单来说在mybatis.xml中实现关联查询实在是有些麻烦,正是因为起框架本质是实现orm的半自动化. 那么mybatis实现一对一的关联查询则是 ...

  4. List泛型集合

    List和数组 相同点: 都可以控制元素类型 不同点: List的长度是可变的,所以list比数组更容易掌控 List属性 1.Count 获取集合中实际包含的元素个数 2.Capcity 集合中可以 ...

  5. [资源]--完美解决--用VS中的Git做代码管理器,与他人共享代码

    1.创建代码仓库,这里说一下为什么要创建仓库,Git不能够作为源代码管理器,vs中自带的也只能够在本地进行管理,要和他们共享的话必须要有服务器端去存储代码,类似于SVN,它就有客户端和服务器端,这里推 ...

  6. BZOJ3729Gty的游戏——阶梯博弈+巴什博弈+非旋转treap(平衡树动态维护dfs序)

    题目描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动到这个节点先手是否有必胜策略.gt ...

  7. python3实现感知器,简单神经网络

    三个输入,四个输出,四组数据 对numpy和矩阵运算还不是太熟悉,可能写的复杂了点,矩阵数组来回转换 代码请查看码云 运行结果片段

  8. [CTSC2018] 假面 | 期望 DP

    题目链接 LOJ 2552 Luogu P4564 考场上这道题我先是写了个70分暴力,然后发现似乎可以NTT,然鹅问题是--我没学过NTT,遂脑补之,脑补出来了,下午出成绩一看,卡成暴力分(70)- ...

  9. cf379F New Year Tree (树的直径+倍增lca)

    可以证明,如果合并两棵树,新的直径的端点一定是原来两树中直径的端点 可以把新加两个点的操作看成是把两个只有一个点的树合并到原来的树上,然后用其中的一个点去和原来树上的直径两端点更新直径就可以了 #in ...

  10. hdu3516 Tree Construction (区间dp+四边形优化)

    构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...