单细胞数据高级分析之消除细胞周期因素 | Removal of cell cycle effect
The normalization method described above aims to reduce the effect of technical factors in scRNA-seq data (primarily, depth) from downstream analyses. However, heterogeneity in cell cycle stage, particularly among mitotic cells transitioning between S and G2/M phases, also can drive substantial transcriptomic variation that can mask biological signal. To mitigate this effect, we use a two-step approach:
1) quantify cell cycle stage for each cell using supervised analyses with known stage-specific markers,
2) regress the effect of cell cycle stage using the same negative binomial regression as outlined above.
For the first step we use a previously published list of cell cycle dependent genes (43S phase genes, 54 G2/M phase genes) for an enrichment analysis similar to that proposed in ref. 11.
For each cell, we compare the sum of phase-specific gene expression (log10 transformed UMIs) to the distribution of 100 random background genes sets, where the number of background genes is identical to the phase gene set, and the background genes are drawn from the same expression bins. Expression bins are defined by 50 non-overlapping windows of the same range based on log10(mean UMI). The phase-specific enrichment score is the expression z-score relative to the mean and standard deviation of the background gene sets. Our final ‘cell cycle score’ (Extended Data Fig. 1) is the difference between S-phase score and G2/M-phase score.
For a final normalized dataset with cell cycle effect removed, we perform negative binomial regression with technical factors and cell cycle score as predictors. Although the cell cycle activity was regressed out of the data for downstream analysis, we stored the computed cell cycle score before regression, enabling us to remember the mitotic phase of each individual cell. Notably, our regression strategy is tailored to mitigate the effect of transcriptional heterogeneity within mitotic cells in different phases, and should not affect global differences between mitotic and non-mitotic cells that may be biologically relevant.
get.cc.score <- function(cm, N=100, seed=42) {
set.seed(seed)
cat('get.cc.score, ')
cat('number of random background gene sets set to', N, '\n') min.cells <- 5 cells.mols <- apply(cm, 2, sum)
gene.cells <- apply(cm>0, 1, sum)
cm <- cm[gene.cells >= min.cells, ] gene.mean <- apply(cm, 1, mean) breaks <- unique(quantile(log10(gene.mean), probs = seq(0,1, length.out = 50)))
gene.bin <- cut(log10(gene.mean), breaks = breaks, labels = FALSE)
names(gene.bin) <- rownames(cm)
gene.bin[is.na(gene.bin)] <- 0 regev.s.genes <- read.table(file='./annotation/s_genes.txt', header=FALSE, stringsAsFactors=FALSE)$V1
regev.g2m.genes <- read.table(file='./annotation/g2m_genes.txt', header=FALSE, stringsAsFactors=FALSE)$V1 goi.lst <- list('S'=rownames(cm)[!is.na(match(toupper(rownames(cm)), regev.s.genes))],
'G2M'=rownames(cm)[!is.na(match(toupper(rownames(cm)), regev.g2m.genes))]) n <- min(40, min(sapply(goi.lst, length)))
goi.lst <- lapply(goi.lst, function(x) x[order(gene.mean[x], decreasing = TRUE)[1:n]]) bg.lst <- list('S'=get.bg.lists(goi.lst[['S']], N, gene.bin),
'G2M'=get.bg.lists(goi.lst[['G2M']], N, gene.bin)) all.genes <- sort(unique(c(unlist(goi.lst, use.names=FALSE), unlist(bg.lst, use.names=FALSE)))) expr <- log10(cm[all.genes, ]+1) s.score <- enr.score(expr, goi.lst[['S']], bg.lst[['S']])
g2m.score <- enr.score(expr, goi.lst[['G2M']], bg.lst[['G2M']]) phase <- as.numeric(g2m.score > 2 & s.score <= 2)
phase[g2m.score <= 2 & s.score > 2] <- -1 return(data.frame(score=s.score-g2m.score, s.score, g2m.score, phase))
}
单细胞数据高级分析之消除细胞周期因素 | Removal of cell cycle effect的更多相关文章
- 单细胞数据高级分析之初步降维和聚类 | Dimensionality reduction | Clustering
个人的一些碎碎念: 聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kme ...
- 单细胞数据高级分析之构建成熟路径 | Identifying a maturation trajectory
其实就是另一种形式的打分. 个人点评这种方法: 这篇文章发表在nature上,有点奇怪,个人感觉创新性和重要性还不够格,工具很多,但是本文基本都是自己开发的算法(毕竟satji就是搞统计出身的). 但 ...
- 第二篇:智能电网(Smart Grid)中的数据工程与大数据案例分析
前言 上篇文章中讲到,在智能电网的控制与管理侧中,数据的分析和挖掘.可视化等工作属于核心环节.除此之外,二次侧中需要对数据进行采集,数据共享平台的搭建显然也涉及到数据的管理.那么在智能电网领域中,数据 ...
- Lakehouse: 统一数据仓库和高级分析的新一代开放平台
1. 摘要 数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性 基于开放的数据格式,如Parquet: 机器学习和数据科学将被作为头等公民支持: 提供卓越 ...
- 《Wireshark数据包分析实战》 - http背后,tcp/ip抓包分析
作为网络开发人员,使用fiddler无疑是最好的选择,方便易用功能强. 但是什么作为爱学习的同学,是不应该止步于http协议的,学习wireshark则可以满足这方面的需求.wireshark作为抓取 ...
- 单细胞数据初步处理 | drop-seq | QC | 质控 | 正则化 normalization
比对 The raw Drop-seq data was processed with the standard pipeline (Drop-seq tools version 1.12 from ...
- 【Social listening实操】作为一个合格的“增长黑客”,你还得重视外部数据的分析!
本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 在本文中,作者引出了"外部数据"这一概 ...
- Wireshark数据包分析(一)——使用入门
Wireshark简介: Wireshark是一款最流行和强大的开源数据包抓包与分析工具,没有之一.在SecTools安全社区里颇受欢迎,曾一度超越Metasploit.Nessus.Aircrack ...
- 关于RECOVERY清除数据的分析
[前言] 讨论:双清和清空所有数据的问题 说明:以前写的帖子都写三清,那个是为了保险起见才叫大家三项清除,毕竟人都有刚开始的时候,但看了郭贤普的帖子<系统与数据兼容性测试>之后,我觉得有必 ...
随机推荐
- 20145221高其_Web安全基础实践
20145221高其_Web安全基础实践 目录 实践目标 WebGoat BurpSuite Injection Flaws Cross-Site Scripting (XSS) 总结 实践目标 (1 ...
- day 26 元类
一.isinstance issubclass class Person: passclass Student(Person): passstu1=Student()#判断是不是实例print(isi ...
- was清除项目缓存数据
步骤 彻底清理删除后的项目缓存 删除${WAS_HOME}\AppServer\profiles\AppSrv01\config\cells\xxxxxNode01Cell/applications/ ...
- 获取验证码的URL后边为什么要加上一个值不断变化的参数?
$(function(){ $("#change").click(function(){ //修改src属性 $("#imgCode").attr(" ...
- 学习dart从这里开始
void main() { ; i < ; i++) { print('hello ${i + 1}'); } } // 定义个方法. printNumber(num aNumber) { pr ...
- 使用vs code搭建C开发环境
关于搭建vscode的开发环境来开发c网上已经有很多类似的贴子,但是几乎都是直接给出tasks.json和launch.json文件,并未说明这两个文件的作用以及如何配置.这里面向纯小白着重说明下(1 ...
- tp框架中的一些疑点知识-5
关于vim中的缓存区的前后bp和bn的界定 通过命令ls可以看到 缓存区的 排序. 最开始打开的文件排在最上面, 序号最小. 那么它们就是 更 前 的缓冲区. 序号更前的用bp, 序号靠后的用bn. ...
- Almost Union-Find (并查集+删除元素)题解
思路: 当时只有暴力的思想,1.3都很好达到,只要加一个sum[ ]和num[ ]就可以,但是2比较麻烦,不知道谁以p为根,就想直接扫描然后一个个和p脱离关系,果然超时emmm.通常的想法是我们先用一 ...
- Robot Framework+AutoItLibrary+AutoIt使用
使用记录: 1. 打开被测桌面程序: 2. 打开AutoIt,用finder tool拖拽到控件上,可以看到控件的信息: 3. 如果空间的Title.Control Info抓不到,可以看Mouse下 ...
- 基因组与Python --PyVCF 好用的vcf文件处理器
vcf文件的全称是variant call file,即突变识别文件,它是基因组工作流程中产生的一种文件,保存的是基因组上的突变信息.通过对vcf文件进行分析,可以得到个体的变异信息.嗯,总之,这是很 ...