CodeForces - 1100F:Ivan and Burgers (线性基&贪心)(离线 在线)
题意:给定N个数,Q次询问,求区间最大异或和。
思路:一开始想的线性基+线段树。单次线性基合并的复杂度为20*20,结合线段树,复杂度为O(NlogN*20*20);显然,超时。
超时代码:
#include<bits/stdc++.h>
#define pb push_back
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
int a[maxn]; vector<int>G[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
void add(vector<int>&Now,vector<int>&p)
{
rep(i,,){
int x=p[i]; if(!x) continue;
rep2(j,,){
if(x&(<<j)){
if(Now[j]) x^=Now[j];
else { Now[j]=x;break;}
}
}
}
}
void build(int Now,int L,int R)
{
rep(i,,) G[Now].pb();
if(L==R){
int x=a[L]; if(!x) return;
rep2(j,,){
if(x&(<<j)){
if(G[Now][j]) x^=G[Now][j];
else { G[Now][j]=x;break;}
}
}
return ;
}
int Mid=(L+R)>>;
build(Now<<,L,Mid); build(Now<<|,Mid+,R);
G[Now]=G[Now<<]; add(G[Now],G[Now<<|]);
}
void query(int Now,int L,int R,int l,int r,vector<int>& res)
{
if(l<=L&&r>=R) { res=G[Now]; return ;}
int Mid=(L+R)>>;
rep(i,,) res.pb();
if(l<=Mid){
vector<int>t;
query(Now<<,L,Mid,l,r,t);
res=t;
}
if(r>Mid) {
vector<int>t;
query(Now<<|,Mid+,R,l,r,t);
add(res,t);
}
}
int main()
{
int N,M,L,R; scanf("%d",&N);
rep(i,,N) read(a[i]);
build(,,N);
scanf("%d",&M);
while(M--){
read(L); read(R);
vector<int>t;
query(,,N,L,R,t);
int res=; rep2(i,,) if((res^t[i])>res) res^=t[i];
printf("%d\n",res);
}
return ;
}
我们考虑离线,把所有询问按右端点排序,然后从左到有处理询问,对于当前询问[L,R];我们把[1,R]所有的数加入线性基,关键是对于每一位,我们保留其为位置,这里肯定是贪心地保留越后面的位置越优。 那么查询的时候,如果一个线性基里的数位置>=L,则可以考虑更新答案。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
struct in{
int l,r,id;
friend bool operator< (in w,in v){ return w.r<v.r;}
}s[maxn];
int N,Q,ans[maxn],a[maxn],p[],pos[];
void add(int x,int id)
{
rep2(i,,)
if(x&(<<i)){
if(!p[i]){
p[i]=x; pos[i]=id;
return ;
}
if(pos[i]<id) swap(p[i],x),swap(pos[i],id);
x^=p[i];
}
}
int query(int id)
{
int res=;
rep2(i,,) if(pos[i]>=id&&(res^p[i])>res) res^=p[i];
return res;
}
int main()
{
scanf("%d",&N);
rep(i,,N) scanf("%d",&a[i]);
scanf("%d",&Q);
rep(i,,Q) scanf("%d%d",&s[i].l,&s[i].r),s[i].id=i;
sort(s+,s+Q+); int L=;
rep(i,,Q){
while(L<=s[i].r&&L<=N) add(a[L],L),++L;
ans[s[i].id]=query(s[i].l);
}
rep(i,,Q) printf("%d\n",ans[i]);
return ;
}
那么同理,不难想出在线的做法,我们纪录一个前缀和 线性基,任然保留最大的位置。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
int p[maxn][],pos[maxn][];
int main()
{
int N,Q,L,R,x;
scanf("%d",&N);
rep(i,,N) {
rep(j,,) p[i][j]=p[i-][j],pos[i][j]=pos[i-][j];
scanf("%d",&x); int ti=i;
rep2(j,,){
if(x&(<<j)){
if(!p[i][j]) { p[i][j]=x; pos[i][j]=ti; break; }
if(pos[i][j]<ti) swap(p[i][j],x),swap(pos[i][j],ti);
x^=p[i][j];
}
}
}
scanf("%d",&Q);
rep(i,,Q) {
scanf("%d%d",&L,&R);
int res=;
rep2(j,,) if(pos[R][j]>=L&&(res^p[R][j])>res) res^=p[R][j];
printf("%d\n",res);
}
return ;
}
CodeForces - 1100F:Ivan and Burgers (线性基&贪心)(离线 在线)的更多相关文章
- codeforces 1100F Ivan and Burgers 线性基 离线
题目传送门 题意: 给出 n 个数,q次区间查询,每次查询,让你选择任意个下标为 [ l , r ] 区间内的任意数,使这些数异或起来最大,输出最大值. 思路:离线加线性基. 线性基学习博客1 线性基 ...
- CodeForces 1100F Ivan and Burgers
CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...
- BZOJ 2460 & 洛谷 P4570 [BJWC2011]元素 (线性基 贪心)
题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线 ...
- Codeforces 1100F(线性基+贪心)
题目链接 题意 给定序列,$q(1\leq q \leq 100000) $次询问,每次查询给定区间内的最大异或子集. 思路 涉及到最大异或子集肯定从线性基角度入手.将询问按右端点排序后离线处理询问, ...
- F. Ivan and Burgers(线性基,离线)
题目链接:http://codeforces.com/contest/1100/problem/F 题目大意:首先输入n,代表当前有n个数,然后再输入m,代表m次询问,每一次询问是询问区间[l,r], ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
- 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)
bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- [bzoj 2460]线性基+贪心+证明过程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...
随机推荐
- 牛客网 PAT 算法历年真题 1012 : D进制的A+B (20)
D进制的A+B (20) 时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 输入两个非负10进制整数A和B(< ...
- 通过css 实现“瀑布流”
.hot_list{-webkit-column-count: 2; -moz-column-count: 2; column-count: 2; -moz-column-gap:7px; -webk ...
- angular4,angular6 父组件异步获取数据传值子组件 undefined 问题
通过输入和输出属性 实现数据在父子组件的交互在子组件内部使用@input接受父组件传入数据,使用@output传出数据到父组件详细标准讲解参考官方文档https://angular.cn/guide/ ...
- Linux第三周作业
1.三个法宝 ①存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: ②函数调用堆栈,堆栈完成了计算机的基本功能:函数的参数传递机制和局部变量存取 : ③中断,多道程序操作系统的基点,没有中断机制 ...
- Uboot代码分析
(1)确定链接脚本文件:uboot根目录下Makefile中的LDSCRIPT宏值,就是指定链接脚本(如:arch/arm/cpu/u-boot.lds)路径用的.(2)从脚本文件找入口: 在链接脚本 ...
- .NetCore发布到Centos docker
将.netcore mvc项目发布到centos7的docker中.环境 vmware14+Centos7+docker-ce 1.使用vs将.netcoremvc项目发布到本地,修改发布后的目录 名 ...
- day05列表 类型
基本使用 1用途:记录多个值,比如人的多个爱好 # ======================================基本使用================================ ...
- git-github-TortoiseGit综合使用教程(一)简介
简介: 本系列教程将参考廖雪峰的git系列教程,使用github的web界面,和TortoiseGit图形界面windows程序来实现. git 是什么: Git是目前世界上最先进的分布式版本控制系统 ...
- 《Python》模块和包
一.模块 1.什么是模块: 一个模块就是一个包含了Python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1.使用Python编写的代码(. ...
- xshell无法在小键盘输入数字
自从很久之前用小键盘输入数字后出现奇怪的字母并换行后就不用小键盘,今天脑抽又用小键盘写数字,并决定解决问题. 原因分析: 当xshell终端类型不是"VT220"或者"A ...