摘抄自马士兵java并发视频课程;

一、需求背景:          

有N张火车票,每张票都有一个编号,同时有10个窗口对外售票, 请写一个模拟程序。

分析下面的程序可能会产生哪些问题?重复销售?超量销售?

/**
* 有N张火车票,每张票都有一个编号
* 同时有10个窗口对外售票
* 请写一个模拟程序
*
* 分析下面的程序可能会产生哪些问题?
* 重复销售?超量销售?
*
* @author 马士兵
*/
package yxxy.c_024; import java.util.ArrayList;
import java.util.List; public class TicketSeller1 {
static List<String> tickets = new ArrayList<>(); static {
for(int i=0; i<10000; i++) tickets.add("票编号:" + i);
} public static void main(String[] args) {
for(int i=0; i<10; i++) {
new Thread(()->{
while(tickets.size() > 0) {
System.out.println("销售了--" + tickets.remove(0));
}
}).start();
}
}
}

可能卖重;一张票可能对多个线程同时remove(0),所以可能一张票被卖出去多次;也可能最后一张票的时候都被多个线程remove(),程序会报错,总之,不加锁是不行的。

ArrayList不是同步的,remove、add等各种方法全都不是同步的;一定会出问题;

二、使用Vector          

/**
* 使用Vector或者Collections.synchronizedXXX
* 分析一下,这样能解决问题吗?
*
* @author 马士兵
*/
package yxxy.c_024; import java.util.Vector;
import java.util.concurrent.TimeUnit; public class TicketSeller2 {
static Vector<String> tickets = new Vector<>(); static {
for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);
} public static void main(String[] args) { for(int i=0; i<10; i++) {
new Thread(()->{
while(tickets.size() > 0) { try {
TimeUnit.MILLISECONDS.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
} System.out.println("销售了--" + tickets.remove(0));
}
}).start();
}
}
}
Vector是一个同步容器,所有的方法都是加锁的;
虽然说在Vector里面remove方法是原子的,但是while条件中判断和remove是分离的;如果在while条件和remove之间被打断的话,问题依旧;(假设剩下最后一张票,多个线程争抢同一张票,每一个线程判断的size大于0,虽然size和remove都是原子性的,但是在判断和remove中间的这段过程中,还是可能被打断,A线程判断了size>0,还没有remove的时候被打断了,B线程把票拿走了,A线程继续往下执行的时候再remove就出问题了。)
所以只是把List换成同步容器Vector,问题依旧;

三、使用synchronized加锁:

/**
* 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步
* 就像这个程序,判断size和进行remove必须是一整个的原子操作
*
* @author 马士兵
*/
package yxxy.c_024; import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.TimeUnit; public class TicketSeller3 {
static List<String> tickets = new LinkedList<>(); static {
for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);
} public static void main(String[] args) { for(int i=0; i<10; i++) {
new Thread(()->{
while(true) {
synchronized(tickets) {
if(tickets.size() <= 0) break; try {
TimeUnit.MILLISECONDS.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
} System.out.println("销售了--" + tickets.remove(0));
}
}
}).start();
}
}
}
相当于把判断和销售都加到了一个原子操作里去了;可以解决问题;
不过加锁后效率并不是很高;每销售一张票的时候都要把整个队列tickets锁定;
 
四、使用ConcurrentLinkedQueue提供并发性
/**
* 使用ConcurrentQueue提高并发性
*
* @author 马士兵
*/
package yxxy.c_024; import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue; public class TicketSeller4 {
static Queue<String> tickets = new ConcurrentLinkedQueue<>(); static {
for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);
} public static void main(String[] args) { for(int i=0; i<10; i++) {
new Thread(()->{
while(true) {
String s = tickets.poll();
if(s == null) {
break;
}else {
System.out.println("销售了--" + s);
}
}
}).start();
}
}
}
 
这里面没有加锁,同样的也有判断,但是这个不会出问题;为什么?
因为在做了s==null判断后,再也没有对队列进行修改操作;(上个程序都是做了判断之后,需要对队列进行修改操作remove一下)
假如A线程执行完String s = tickets.poll(),还没有来得及执行if(s==null) break就被打断了,另外一个线程把队列拿空了,大不了while(true)返过头来再拿一遍得到null,所以不会出问题;
 
 
五、ConcurrentHashMap
/**
* http://blog.csdn.net/sunxianghuang/article/details/52221913
* http://www.educity.cn/java/498061.html
* 阅读concurrentskiplistmap
*/
package yxxy.c_025; import java.util.Arrays;
import java.util.Hashtable;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListMap;
import java.util.concurrent.CountDownLatch; public class T01_ConcurrentMap {
public static void main(String[] args) {
// Map<String, String> map = new ConcurrentHashMap<>();
Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序 // Map<String, String> map = new Hashtable<>();
//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX
//TreeMap
Random r = new Random();
Thread[] ths = new Thread[100];
CountDownLatch latch = new CountDownLatch(ths.length);
long start = System.currentTimeMillis();
for(int i=0; i<ths.length; i++) {
ths[i] = new Thread(()->{
for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));
latch.countDown();
});
} Arrays.asList(ths).forEach(t->t.start());
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
} long end = System.currentTimeMillis();
System.out.println(end - start);
}
}
不同的Map容器执行完这段代码的时间:
HashTable:445;
ConcurrentHashMap:402;
 
多线程的环境下ConcurrentHashMap的效率要比hashTable高一些,高在哪?
hashTable往里加任何一个数据的时候,都是要锁定整个hashTable对象,而concurrentHashMap默认的是把容器分成16段,每次往里插数据的时候只锁定16段其中的一个部分;把锁细化了;当很多线程共同往里插数据的时候,线程A插的是其中一段,线程B是往另一段里插,那么这两个线程就可以同时并发的往里插;因此多线程环境下要比hashTable高;
 
ConcurrentSkipListMap:是支持排序的,所以插入的时候慢了一些;
Collections.synchronizedList/Collections.synchronizedMap(Map<K, V>):往里面传一个不加锁的Map,将它包装一下,返回一个加了锁的Map;
 
注:以上所有的map,都可以换成set;因为set只是使用了map的key。
 
 
六、CopyOnWriteList:
/**
* 写时复制容器 copy on write
* 多线程环境下,写时效率低,读时效率高
* 适合写少读多的环境
* @author 马士兵
*/
package yxxy.c_025; import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;
import java.util.Vector;
import java.util.concurrent.CopyOnWriteArrayList; public class T02_CopyOnWriteList {
public static void main(String[] args) {
List<String> lists =
//new ArrayList<>(); //这个会出并发问题!
//new Vector();
new CopyOnWriteArrayList<>();
Random r = new Random();
Thread[] ths = new Thread[100]; for(int i=0; i<ths.length; i++) {
Runnable task = new Runnable() { @Override
public void run() {
for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));
} };
ths[i] = new Thread(task);
} runAndComputeTime(ths); System.out.println(lists.size());
} static void runAndComputeTime(Thread[] ths) {
long s1 = System.currentTimeMillis();
Arrays.asList(ths).forEach(t->t.start());
Arrays.asList(ths).forEach(t->{
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long s2 = System.currentTimeMillis();
System.out.println(s2 - s1);
}
}
CopyOnWriteList:写时复制容器,这个容器当你往里要添加一个元素的时候,他会把这个容器复制一份,在后面加一新的数据,然后把引用指向新的容器;写时复制有什么好处?对于那些从里往外读数据的线程来说再也不用加锁了,因为读的时候引用指向新的容器了,再读的时候是从新的引用里读;
(读需要加锁的情况下,是出现脏读的情况下才需要加锁;CopyOnWriteList是不可能出现脏读的,他前后数据一定是一致的,没有中间状态;因为它在新的复制一份的里面做更改,更改完了以后马上把引用指向新的,这是一个原子性操作,所以他不会出现脏读的情况,因此不需要加锁。)
写的特别少,但是往外读特别多的时候使用CopyOnWriteList;
 
七、ConcurrentLinkedQueue:
package yxxy.c_025;

import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue; public class T04_ConcurrentQueue {
public static void main(String[] args) {
Queue<String> strs = new ConcurrentLinkedQueue<>(); for(int i=0; i<10; i++) {
strs.offer("a" + i); //add
} System.out.println(strs); System.out.println(strs.size()); System.out.println(strs.poll());
System.out.println(strs.size()); System.out.println(strs.peek());
System.out.println(strs.size()); //双端队列Deque
}
}

console:

[a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]
10
a0
9
a1
9
Queue:队列,在并发容器里面最重要的也是应用的最多的容器;有很多种实现,ConcurrentLinkedQueue,BlockingQueue;
常见操作:
offer: 类似于add方法,但是add方法加的时候会出问题,如果有容量的限制话add就会抛异常;offer不会抛异常,返回值boolean代表是否加成功;
poll(): 从头部拿出来一个元素,同时把原来的删掉;
peek(): 从头部拿出来一个,但是原来的不删;
 
 
八、LinkedBlockingQueue和ArrayBlockingQueue
LinkedBlockingQueue实现的一个简单的生产者消费者程序:
package yxxy.c_025;

import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit; public class T05_LinkedBlockingQueue { static BlockingQueue<String> strs = new LinkedBlockingQueue<>(); static Random r = new Random(); public static void main(String[] args) {
new Thread(() -> {
for (int i = 0; i < 100; i++) {
try {
strs.put("a" + i); //如果满了,就会等待
TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "p1").start(); for (int i = 0; i < 5; i++) {
new Thread(() -> {
for (;;) {
try {
System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //如果空了,就会等待
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "c" + i).start(); }
}
}
Queue在高并发的情况下可以使用两种队列:
ConcurrentLinkedQueue:内部加锁的
BlockingQueue:阻塞式队列,如LinkedBlockingQueue,ArrayBlockingQueue。阻塞式的意思是,生产者消费者模式中生产者已经生产满了直接等待wait,消费如果空了消费者就会直接等待。
LinkedBockingQueue是链表实现的阻塞式容器,是无界队列(往里扔多少个元素都可以,内存满足的情况下)
ArrayBlockingQueue:有界队列
 
package yxxy.c_025;

import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit; public class T06_ArrayBlockingQueue { static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10); //有界队列,最多装10个元素 static Random r = new Random(); public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 10; i++) {
strs.put("a" + i);
} strs.put("aaa"); //满了就会等待,程序阻塞,无限制的阻塞下去
//strs.add("aaa"); //报异常,Queue full
//strs.offer("aaa"); //不会报异常,但是加不进去;boolean带表是否加成功;这是add和offer的区别
//strs.offer("aaa", 1, TimeUnit.SECONDS); //1s钟之后加不进去就加不进了;按时间段阻塞 System.out.println(strs);
}
}

九、DelayQueue·:      

package yxxy.c_025;

import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit; public class T07_DelayQueue { static BlockingQueue<MyTask> tasks = new DelayQueue<>(); static Random r = new Random(); static class MyTask implements Delayed {
long runningTime; MyTask(long rt) {
this.runningTime = rt;
} @Override
public int compareTo(Delayed o) {
if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))
return -1;
else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS))
return 1;
else
return 0;
} @Override
public long getDelay(TimeUnit unit) {
return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
} @Override
public String toString() {
return "" + runningTime;
}
} public static void main(String[] args) throws InterruptedException {
long now = System.currentTimeMillis();
MyTask t1 = new MyTask(now + 1000);
MyTask t2 = new MyTask(now + 2000);
MyTask t3 = new MyTask(now + 1500);
MyTask t4 = new MyTask(now + 2500);
MyTask t5 = new MyTask(now + 500); tasks.put(t1);
tasks.put(t2);
tasks.put(t3);
tasks.put(t4);
tasks.put(t5); System.out.println(tasks); for(int i=0; i<5; i++) {
System.out.println(tasks.take());
}
}
}

console:

[1534606492700, 1534606493200, 1534606493700, 1534606494700, 1534606494200]
1534606492700
1534606493200
1534606493700
1534606494200
1534606494700
 
DelayQueue:无界队列,加进去的每一个元素,如果理解为一个任务的话,这个元素什么时候可以让消费者往外拿呢?每一个元素记载着我还有多长时间可以从队列中被消费者拿走;这个队列默认是排好顺序的,等待的时间最长的排在最前面,先往外拿;
DelayQueue往里添加的元素是要实现Delayed接口;
可以用来执行定时任务;
 
十、TransferQueue:  
TransferQueue:提供了transfer方法,一般是这种情形,有一个队列,消费者线程先启动,然后生产者生产一个东西的时候不是往队列里头仍,它首先去找有没有消费者,如果有消费者,生产的东西不往队列里扔了而是直接给消费者消费;如果没有消费者的话,调用transfer线程就会阻塞;
 
比如场景:坦克大战中多个坦克客户端链接服务器,坦克A移动了,服务端需要把A移动的位置消息发送给其他客户端,服务端存在一个消息队列,消息都交给不同的线程处理,有一种是都往消息队列里扔,然后再往外拿,不过这种太慢了;假如有一大推消费者线程等着,那么直接把消息扔给消费者线程就行了,不要再往队列里扔了,效率会更高一些;所以TransferQueue是用在更高的并发的情况下。
 
例子程序:
1.先起消费者,在起生产者transfer,程序正常:
package yxxy.c_025;

import java.util.concurrent.LinkedTransferQueue;

public class T08_TransferQueue {
public static void main(String[] args) throws InterruptedException {
LinkedTransferQueue<String> strs = new LinkedTransferQueue<>(); new Thread(() -> {
try {
System.out.println(strs.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start(); strs.transfer("aaa");
}
}

2.如果先起生产者transfer,然后再起消费者take,程序就会阻塞住了:

package yxxy.c_025;

import java.util.concurrent.LinkedTransferQueue;

public class T08_TransferQueue {
public static void main(String[] args) throws InterruptedException {
LinkedTransferQueue<String> strs = new LinkedTransferQueue<>(); strs.transfer("aaa"); new Thread(() -> {
try {
System.out.println(strs.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}

3.如果transfer换成put(或者add、offer),也不会有问题,因为不会阻塞:

package yxxy.c_025;

import java.util.concurrent.LinkedTransferQueue;

public class T08_TransferQueue {
public static void main(String[] args) throws InterruptedException {
LinkedTransferQueue<String> strs = new LinkedTransferQueue<>(); //strs.transfer("aaa"); strs.put("aaa"); new Thread(() -> {
try {
System.out.println(strs.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}

十一、SynchronousQueue  

package yxxy.c_025;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue; public class T09_SynchronusQueue { //容量为0
public static void main(String[] args) throws InterruptedException {
BlockingQueue<String> strs = new SynchronousQueue<>(); new Thread(()->{
try {
System.out.println(strs.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start(); strs.put("aaa"); //阻塞等待消费者消费
//strs.add("aaa");
System.out.println(strs.size());
}
}
SynchronousQueue:同步队列,一种特殊的transferQueue,前面说的TransferQueue如果生产者生产了东西,这时候没有消费者,如果使用put/add,还可以扔到队列里,这个队列还是有一定的容量的;
而SynchronousQueue叫做没有容量的队列,容量为0,生产者生产的东西必须马上消费掉,如果不消费掉就会出问题;调add抛异常(Queue full),调put程序阻塞;
 
 总结:
总结:
1:对于map/set的选择使用
HashMap 不需要多线程的情况下使用
TreeMap 不需要多线程的情况下使用
LinkedHashMap 不需要多线程的情况下使用 Hashtable 并发量比较小
Collections.sychronizedXXX 并发量比较小 ConcurrentHashMap 高并发
ConcurrentSkipListMap 高并发同时要求排好顺序 2:队列
ArrayList 不需要同步的情况
LinkedList 不需要同步的情况
Collections.synchronizedXXX 并发量低
Vector 并发量低
CopyOnWriteList 写的时候少,读时候多
Queue
CocurrentLinkedQueue //concurrentArrayQueue 高并发队列
BlockingQueue 阻塞式
LinkedBQ 无界
ArrayBQ 有界
TransferQueue 直接给消费者线程,如果没有消费者阻塞
SynchronusQueue 特殊的transferQueue,容量0
DelayQueue执行定时任务
 
 
 
 

java高并发编程(四)高并发的一些容器的更多相关文章

  1. Java并发编程(四):并发容器(转)

    解决并发情况下的容器线程安全问题的.给多线程环境准备一个线程安全的容器对象. 线程安全的容器对象: Vector, Hashtable.线程安全容器对象,都是使用 synchronized 方法实现的 ...

  2. java并发编程与高并发解决方案

    下面是我对java并发编程与高并发解决方案的学习总结: 1.并发编程的基础 2.线程安全—可见性和有序性 3.线程安全—原子性 4.安全发布对象—单例模式 5.不可变对象 6.线程封闭 7.线程不安全 ...

  3. Java并发编程系列-(1) 并发编程基础

    1.并发编程基础 1.1 基本概念 CPU核心与线程数关系 Java中通过多线程的手段来实现并发,对于单处理器机器上来讲,宏观上的多线程并行执行是通过CPU的调度来实现的,微观上CPU在某个时刻只会运 ...

  4. java并发编程--第一章并发编程的挑战

    一.java并发编程的挑战 并发编程需要注意的问题: 并发编程的目的是让程序运行的更快,然而并不是启动更多的线程就能让程序最大限度的并发执行.若希望通过多线程并发让程序执行的更快,会受到如下问题的挑战 ...

  5. 并发编程概述--C#并发编程经典实例

    优秀软件的一个关键特征就是具有并发性.过去的几十年,我们可以进行并发编程,但是难度很大.以前,并发性软件的编写.调试和维护都很难,这导致很多开发人员为图省事放弃了并发编程.新版.NET 中的程序库和语 ...

  6. 【Java并发编程四】关卡

    一.什么是关卡? 关卡类似于闭锁,它们都能阻塞一组线程,直到某些事件发生. 关卡和闭锁关键的不同在于,所有线程必须同时到达关卡点,才能继续处理.闭锁等待的是事件,关卡等待的是其他线程. 二.Cycli ...

  7. Java 并发编程(四):如何保证对象的线程安全性

    01.前言 先让我吐一句肺腑之言吧,不说出来会憋出内伤的.<Java 并发编程实战>这本书太特么枯燥了,尽管它被奉为并发编程当中的经典之作,但我还是忍不住.因为第四章"对象的组合 ...

  8. 【Java并发编程】:并发新特性—Executor框架与线程池

    Executor框架简介 在Java5之后,并发编程引入了一堆新的启动.调度和管理线程的API.Executor框架便是Java 5中引入的,其内部使用了线程池机制,它在java.util.cocur ...

  9. Java并发编程之支持并发的list集合你知道吗

    Java并发编程之-list集合的并发. 我们都知道Java集合类中的arrayList是线程不安全的.那么怎么证明是线程不安全的呢?怎么解决在并发环境下使用安全的list集合类呢? 本篇是<凯 ...

  10. Java并发编程实战笔记—— 并发编程1

    1.如何创建并运行java线程 创建一个线程可以继承java的Thread类,或者实现Runnabe接口. public class thread { static class MyThread1 e ...

随机推荐

  1. [Educational Codeforces Round 55 (Rated for Div. 2)][C. Multi-Subject Competition]

    https://codeforc.es/contest/1082/problem/C 题目大意:有m个类型,n个人,每个人有一个所属类型k和一个能力v,要求所选的类型的人个数相等并且使v总和最大(n, ...

  2. hdu4289 Control 最大流最小割

    You, the head of Department of Security, recently received a top-secret information that a group of ...

  3. 给新创建的用户 赋予所有的权利 *.* 查看权限 删除用户 ---------DCL用户权限管理篇

    第一步:进入数据库以后,先用 show databases; 再use mysql;    再 show tables;    再 select user,host from mysql.user; ...

  4. 用Git向gitHub上传项目

    用Git向gitHub上传项目 1.安装git 2.在git安装目录下,运行git-bash.exe  如图所示 3.在git中绑定你注册gitHub是的用户名.邮箱. $ git config -- ...

  5. Node学习笔记2:建立HTTP服务器和客户端之间的通信

    http服务器端: var http = require('http'); var server = http.createServer(); server.on('request', functio ...

  6. 如何取消noarch.rpm包

    有一次部署zabbix服务器,不小心rpm -ivh zabbix的el7版本的rpm了,但是我的系统是centos6.5的,所以就尴尬了 rpm -ivh http://repo.zabbix.co ...

  7. linux下PHP手动添加扩展库

    1.进入php源程序目录中的ext目录中,这里存放着各个扩展模块的源代码,选择你需要的模块,比如curl模块: cd curl 执行phpize生成编译文件,phpize在PHP安装目录的bin目录下 ...

  8. 使用InternalsVisibleToAttribute给assembly添加“友元assembly”特性遭遇"强签名"

    一.如何让Intenal成员暴露给另一个程序集 我们知道Modifier为Internal的类型成员仅限于当前程序集能够访问,但是在某些情况下,我们希望将它们暴露给另一个程序集.比较典型的应用场景包括 ...

  9. jquery 实现的全选demo

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <script sr ...

  10. webpack 3 升级到 webpack 4,遇到问题解决

    报错:Error: Chunk.entrypoints: Use Chunks.groupsIterable and filter by instanceof Entrypoint instead 解 ...