1 问题描述

在计算机科学中,预排序是一种很古老的思想。实际上,对于排序算法的兴趣很大程度上是因为这样一个事实:如果列表是有序的,许多关于列表的问题更容易求解。显然,对于包含了排序操作,这种算法的时间效率依赖于所选用的排序算法的效率。

对于预排序的具体思想应用请参考下文。

2 解决方案

2.1 检验数组中元素的唯一性


此问题,首先使用合并排序对数组中元素进行一次从小到大的排序,然后,依次检查数组中的元素,看是否有重复元素,如果有这说明该元素不具有唯一性,否则说明该数组中的所有元素具有元素的唯一性。

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
}
//判断数组A(PS:数组A已是有序数组)中元素是否具有唯一性
public boolean judgeOnlyElement(int[] A){
for(int i = 0;i < A.length-1;i++){
if(A[i] == A[i+1])
return false;
}
return true;
} public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
if(test.judgeOnlyElement(A))
System.out.println("\n数组A中的元素具有唯一性");
else
System.out.println("\n数组A中的元素不具有唯一性");
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
if(test.judgeOnlyElement(B))
System.out.println("\n数组B中的元素具有唯一性");
else
System.out.println("\n数组B中的元素不具有唯一性");
}
}

运行结果:

使用归并排序后数组A的结果:
1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中的元素不具有唯一性
使用归并排序后数组B的结果:
2 3 4 5 6 7 8 9
数组B中的元素具有唯一性

2.2 模式计算

在给定的数组列表中最经常出现的一个数值称为模式。例如,对于5,1,5,7,6,5,7来说,模式是5(如果若干个不同的值都是最经常出现的,它们中的任何一个都可以看作模式。)

此处,首先对给定数组中元素使用合并排序进行从小到大排序,然后,依次遍历其中的元素,计算其中重复元素的最大个数,返回该元素的值,即为所求的模式。

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
} //返回数组A(PS:数组A是有序数组)中模式
public int presortMode(int[] A){
int i = 0;
int modeFrequency = 0;
int modeValue = 0;
while(i < A.length){
int temp = i;
int count = 0;
while(temp < A.length && A[temp] == A[i]){
count++;
temp++;
}
if(count > modeFrequency){
modeFrequency = count;
modeValue = A[i];
}
i = i+count;
}
return modeValue;
}
public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("\n数组A中模式为:"+test.presortMode(A));
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
System.out.println("\n数组B中模式为:"+test.presortMode(B));
}
}

运算结果:

使用归并排序后数组A的结果:
1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中模式为:7
使用归并排序后数组B的结果:
2 3 4 5 6 7 8 9
数组B中模式为:1

Java实现预排序的更多相关文章

  1. 算法笔记_036:预排序(Java)

    目录 1 问题描述 2 解决方案 2.1 检验数组中元素的唯一性 2.2 模式计算   1 问题描述 在计算机科学中,预排序是一种很古老的思想.实际上,对于排序算法的兴趣很大程度上是因为这样一个事实: ...

  2. MySql无限分类数据结构--预排序遍历树算法

    MySql无限分类数据结构--预排序遍历树算法 无限分类是我们开发中非常常见的应用,像论坛的的版块,CMS的类别,应用的地方特别多. 我们最常见最简单的方法就是在MySql里ID ,parentID, ...

  3. Java中的排序算法(2)

    Java中的排序算法(2) * 快速排序 * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). * 步骤为: * 1. 从数 ...

  4. Java实现常见排序算法

    常见的排序算法有冒泡排序.选择排序.插入排序.堆排序.归并排序.快速排序.希尔排序.基数排序.计数排序,下面通过Java实现这些排序 1.冒泡排序 package com.buaa; import j ...

  5. Comparable与Comparator,java中的排序与比较

    1:比较和排序的概念 比较:两个实体类之间按>,=,<进行比较. 排序:在集合类中,对集合类中的实体进行排序.排序基于的算法基于实体类提供的比较函数. 基本型别都提供了默认的比较算法,如s ...

  6. Java之List排序出错

    Java之List排序出错 Bound mismatch: The generic method sort(List<T>) of type Collections is not appl ...

  7. Java进阶(三十九)Java集合类的排序,查找,替换操作

    Java进阶(三十九)Java集合类的排序,查找,替换操作 前言 在Java方向校招过程中,经常会遇到将输入转换为数组的情况,而我们通常使用ArrayList来表示动态数组.获取到ArrayList对 ...

  8. java过滤器(过滤器排序)

    java过滤器(过滤器排序) 定义过滤器顺序是很简单的:匹配请求的过滤器将按照它们出现在部署描述符或者编程式配置中的顺序添加到过滤器链中(记住,如果同时再部署描述符或者编程式配置中设置了一些过滤器,那 ...

  9. sqlalchemy tree 树形分类 无限极分类的管理。预排序树,左右值树。sqlalchemy-mptt

    简介: 无限极分类是一种比较常见的数据格式,生成组织结构,生成商品分类信息,权限管理当中的细节权限设置,都离不开无限极分类的管理. 常见的有链表式,即有一个Pid指向上级的ID,以此来设置结构.写的时 ...

随机推荐

  1. 在微服务框架Demo.MicroServer中添加SkyWalking+SkyApm-dotnet分布式链路追踪系统

    1.APM工具的选取 Apm监测工具很多,这里选用网上比较火的一款Skywalking. Skywalking是一个应用性能监控(APM)系统,Skywalking分为服务端Oap.管理界面UI.以及 ...

  2. python --字符串学习

    一 转义字符 借用一个特殊的方法表示一系列不方便写出的内容,比如回车键,换行符,退格键 借助反斜杠字符,一旦出现反斜杠,则反斜杠后面一个或者几个字符表示已经不是原来的意思了 在字符串中,一旦出现了斜杠 ...

  3. md5加密相等绕过

    0x01 <?php $md51 = md5('QNKCDZO'); $a = @$_GET['a']; $md52 = @md5($a); if(isset($a)){ if ($a != ' ...

  4. springmvc 文件上传异步处理

    springmvc3提供了文件上传异步处理功能,当文件上传时,controller不需要一直等到文件上传成功后再返回视图,而是先返回到servlet容器,待异步处理的线程完成后转向指定视图! 首先要在 ...

  5. 02 Redis数据结构基础

    一.客户端命令行参数 1.-x 从标准输入读取一个参数,等价于set k v [root@localhost etc]# echo -en 'v1'|redis-cli -a foobared -x ...

  6. Java并发(4)

    java中的线程安全是什么: 就是线程同步的意思,就是当一个程序对一个线程安全的方法或者语句进行访问的时候,其他的不能再对他进行操作了,必须等到这次访问结束以后才能对这个线程安全的方法进行访问 什么叫 ...

  7. centos8.0安装docker & docker-compose

    centos8.0安装docker&docker-compose 背景简介: 现在centos已经到了8 ,一直在接触容器方面,为了尝鲜,下载了CentOS8,并尝试安装docker& ...

  8. java中的redis常用操作

    https://blog.csdn.net/lixiaoxiong55/article/details/81592800    超详细版 常规操作 public class TestReidsComm ...

  9. SEPC:使用3D卷积从FPN中提取尺度不变特征,涨点神器 | CVPR 2020

    论文提出PConv为对特征金字塔进行3D卷积,配合特定的iBN进行正则化,能够有效地融合尺度间的内在关系,另外,论文提出SEPC,使用可变形卷积来适应实际特征间对应的不规律性,保持尺度均衡.PConv ...

  10. vue中使用vue-qrcode生成二维码

    要使用二维码,引入一个包就可以了,使用非常简单,话不多说,看代码吧 //1,引入, import VueQrcode from '@xkeshi/vue-qrcode'; Vue.component( ...