1 问题描述

在计算机科学中,预排序是一种很古老的思想。实际上,对于排序算法的兴趣很大程度上是因为这样一个事实:如果列表是有序的,许多关于列表的问题更容易求解。显然,对于包含了排序操作,这种算法的时间效率依赖于所选用的排序算法的效率。

对于预排序的具体思想应用请参考下文。

2 解决方案

2.1 检验数组中元素的唯一性


此问题,首先使用合并排序对数组中元素进行一次从小到大的排序,然后,依次检查数组中的元素,看是否有重复元素,如果有这说明该元素不具有唯一性,否则说明该数组中的所有元素具有元素的唯一性。

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
}
//判断数组A(PS:数组A已是有序数组)中元素是否具有唯一性
public boolean judgeOnlyElement(int[] A){
for(int i = 0;i < A.length-1;i++){
if(A[i] == A[i+1])
return false;
}
return true;
} public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
if(test.judgeOnlyElement(A))
System.out.println("\n数组A中的元素具有唯一性");
else
System.out.println("\n数组A中的元素不具有唯一性");
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
if(test.judgeOnlyElement(B))
System.out.println("\n数组B中的元素具有唯一性");
else
System.out.println("\n数组B中的元素不具有唯一性");
}
}

运行结果:

使用归并排序后数组A的结果:
1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中的元素不具有唯一性
使用归并排序后数组B的结果:
2 3 4 5 6 7 8 9
数组B中的元素具有唯一性

2.2 模式计算

在给定的数组列表中最经常出现的一个数值称为模式。例如,对于5,1,5,7,6,5,7来说,模式是5(如果若干个不同的值都是最经常出现的,它们中的任何一个都可以看作模式。)

此处,首先对给定数组中元素使用合并排序进行从小到大排序,然后,依次遍历其中的元素,计算其中重复元素的最大个数,返回该元素的值,即为所求的模式。

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
} //返回数组A(PS:数组A是有序数组)中模式
public int presortMode(int[] A){
int i = 0;
int modeFrequency = 0;
int modeValue = 0;
while(i < A.length){
int temp = i;
int count = 0;
while(temp < A.length && A[temp] == A[i]){
count++;
temp++;
}
if(count > modeFrequency){
modeFrequency = count;
modeValue = A[i];
}
i = i+count;
}
return modeValue;
}
public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("\n数组A中模式为:"+test.presortMode(A));
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
System.out.println("\n数组B中模式为:"+test.presortMode(B));
}
}

运算结果:

使用归并排序后数组A的结果:
1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中模式为:7
使用归并排序后数组B的结果:
2 3 4 5 6 7 8 9
数组B中模式为:1

Java实现预排序的更多相关文章

  1. 算法笔记_036:预排序(Java)

    目录 1 问题描述 2 解决方案 2.1 检验数组中元素的唯一性 2.2 模式计算   1 问题描述 在计算机科学中,预排序是一种很古老的思想.实际上,对于排序算法的兴趣很大程度上是因为这样一个事实: ...

  2. MySql无限分类数据结构--预排序遍历树算法

    MySql无限分类数据结构--预排序遍历树算法 无限分类是我们开发中非常常见的应用,像论坛的的版块,CMS的类别,应用的地方特别多. 我们最常见最简单的方法就是在MySql里ID ,parentID, ...

  3. Java中的排序算法(2)

    Java中的排序算法(2) * 快速排序 * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). * 步骤为: * 1. 从数 ...

  4. Java实现常见排序算法

    常见的排序算法有冒泡排序.选择排序.插入排序.堆排序.归并排序.快速排序.希尔排序.基数排序.计数排序,下面通过Java实现这些排序 1.冒泡排序 package com.buaa; import j ...

  5. Comparable与Comparator,java中的排序与比较

    1:比较和排序的概念 比较:两个实体类之间按>,=,<进行比较. 排序:在集合类中,对集合类中的实体进行排序.排序基于的算法基于实体类提供的比较函数. 基本型别都提供了默认的比较算法,如s ...

  6. Java之List排序出错

    Java之List排序出错 Bound mismatch: The generic method sort(List<T>) of type Collections is not appl ...

  7. Java进阶(三十九)Java集合类的排序,查找,替换操作

    Java进阶(三十九)Java集合类的排序,查找,替换操作 前言 在Java方向校招过程中,经常会遇到将输入转换为数组的情况,而我们通常使用ArrayList来表示动态数组.获取到ArrayList对 ...

  8. java过滤器(过滤器排序)

    java过滤器(过滤器排序) 定义过滤器顺序是很简单的:匹配请求的过滤器将按照它们出现在部署描述符或者编程式配置中的顺序添加到过滤器链中(记住,如果同时再部署描述符或者编程式配置中设置了一些过滤器,那 ...

  9. sqlalchemy tree 树形分类 无限极分类的管理。预排序树,左右值树。sqlalchemy-mptt

    简介: 无限极分类是一种比较常见的数据格式,生成组织结构,生成商品分类信息,权限管理当中的细节权限设置,都离不开无限极分类的管理. 常见的有链表式,即有一个Pid指向上级的ID,以此来设置结构.写的时 ...

随机推荐

  1. beego中Controller的GetControllerAndAction方法

    beego中Controller的GetControllerAndAction方法 GetControllerAndAction方法在beego中的源码 // GetControllerAndActi ...

  2. 关于idea的一次踩坑记录-Auto build completed with errors

    maven项目添加pom依赖后,一直不能正常导入所依赖的jar包,并且报错“ Auto build completed with errors”

  3. 适配器模式C++实现

    目录 类适配器 对象适配器 类适配器 #include <iostream> using namespace std; // Target class Target { public: v ...

  4. 首字母变大写(hdu2026)

    输入方式:直接循环输入带有空格的未知长度的字符串. 思考:直接循环输入带有空格的未知长度的字符串,用while(gets_s())函数,循环内外不用getchar()函数.(注意,每次字符串以整体输入 ...

  5. [PHP]用PHP自己写一个基于zoomeye的api(偷懒必备quq)

    0x01 起因 因为手速慢,漏洞刷不过别人,一个个手补确实慢,所以想自己写一个api,一键抓取zoomeye的20页,然后就可以打批量了 ovo(真是太妙了!) 0x02 动工       1.抓包做 ...

  6. Java——删除Map集合中key-value值

    通过迭代器删除Map集合中的key-value值 Iterator<String> iter = map.keySet().iterator(); while(iter.hasNext() ...

  7. IO字节流与字符流的操作

    字节流:        FileInputStream读取,FileOutputStream输出 字节流使用数组缓冲区复制文件,最后得出所使用的时间 public class work2 { publ ...

  8. vue npm run dev报错webpack-dev-server

    在运行vue项目时报如下问题: E:\mobile_real\mobile-vue>npm run dev > mobile_real@1.0.0 dev E:\mobile_real\m ...

  9. Asp.net core logging 日志

    1 基本概念 Dotnet core 一个重要的特征是 Dependency injection ,中文一般是依赖注入,可以简单理解为一个集合,在应用程序启动时,定义各种具体的实现类型并将其放到集合中 ...

  10. Docker的iptables规则在iptables重启后丢失

    前因后果 1.在跳板机上使用ansible命令测试机器B时,报错如下,于是就怀疑是网络防火墙的问题 10.10.0.86 | FAILED >> { "failed": ...