python实现十大经典排序算法
Python实现十大经典排序算法
代码最后面会给出完整版,或者可以从我的Githubfork,想看动图的同学可以去这里看看;
小结:
- 运行方式,将最后面的代码copy出去,直接python sort.py运行即可;
- 代码中的健壮性没有太多处理,直接使用的同学还要检查检查;
- 对于希尔排序,gap的选择至关重要,需要结合实际情况更改;
- 在我的测试中,由于待排序数组很小,长度仅为10,且最大值为10,因此计数排序是最快的,实际情况中往往不是这样;
- 堆排序没来得及实现,是的,就是懒了;
- 关键在于理解算法的思路,至于实现只是将思路以合理的方式落地而已;
- 推荐大家到上面那个链接去看动图,确实更好理解,不过读读代码也不错,是吧;
- 分治法被使用的很多,事实上我不太清楚它背后的数学原理是什么,以及为什么分治法可以降低时间复杂度,有同学直到麻烦评论区告诉我一下哈,多谢;
运行图
由于数组小,且范围在1到10之间,这其实对于计数排序这种非比较类算法是比较友好的,因为没有多大的空间压力,因此计数排序速度第一很容易理解,而之所以选择、插入比希尔归并要快,主要还是因为问题规模本身太小,而我的分治法的实现是基于递归,因此看不出分治法的优势,事实上如果对超大的数组进行排序的话,这个区别会体现出来;
完整代码
可以看到,全部代码不包括测试代码总共才170行,这还包括了空行和函数名等等,所以本身算法实现是很简单的,大家还是要把注意力放在思路上;
import sys,random,time
def bubble(list_):
running = True
while running:
have_change = False
for i in range(len(list_)-1):
if list_[i]>list_[i+1]:
list_[i],list_[i+1] = list_[i+1],list_[i]
have_change = True
if not have_change:
break
return list_
def select(list_):
for i in range(len(list_)-1):
min_idx = i
for j in range(i,len(list_)):
if list_[min_idx]>list_[j]:
min_idx = j
list_[i],list_[min_idx] = list_[min_idx],list_[i]
return list_
def insert(list_):
for i in range(1,len(list_)):
idx = i
for j in range(i):
if list_[j]>list_[idx]:
idx = j
break
if idx != i:
tmp = list_[i]
list_[idx+1:i+1] = list_[idx:i]
list_[idx] = tmp
return list_
def shell(list_,gap=None):
'''
gap的选择对结果影响很大,是个难题,希尔本人推荐是len/2
这个gap其实是间隙,也就是间隔多少个元素取一组的元素
例如对于[1,2,3,4,5,6,7,8,9,10]
当gap为len/2也就是5时,每一组的元素都是间隔5个的元素组成,也就是1和6,2和7,3和8等等
'''
len_ = len(list_)
gap = int(len_/2) if not gap else gap
while gap >= 1:
for i in range(gap):
list_[i:len_:gap] = insert(list_[i:len_:gap])
gap = int(gap/2)
return list_
def merge(list_):
'''
归并排序的递归实现
思路:将数据划分到每两个为一组为止,将这两个排序后范围,2个包含2个元素的组继续排序为1个4个元素的组,
直到回溯到整个序列,此时其实是由两个有序子序列组成的,典型的递归问题
'''
if len(list_)<=1:
return list_
if len(list_)==2:
return list_ if list_[0]<=list_[1] else list_[::-1]
len_ = len(list_)
left = merge(list_[:int(len_/2)])
right = merge(list_[int(len_/2):])
tmp = []
left_idx,right_idx = 0,0
while len(tmp)<len(list_):
if left[left_idx]<=right[right_idx]:
tmp.append(left[left_idx])
left_idx+=1
if left_idx==len(left):
tmp += right[right_idx:]
break
else:
tmp.append(right[right_idx])
right_idx+=1
if right_idx==len(right):
tmp += left[left_idx:]
break
return tmp
def quick(list_):
'''
快速排序:基于分治法,选定某个元素为基准,对剩余元素放置到基准的左侧和右侧,递归这个过程
'''
if len(list_)<=1:
return list_
if len(list_)==2:
return list_ if list_[0]<=list_[1] else list_[::-1]
base_idx = int(len(list_)/2)
base = list_[base_idx]
left = []
right = []
for i in range(len(list_)):
if i != base_idx:
if list_[i] <= base:
left.append(list_[i])
else:
right.append(list_[i])
return quick(left)+[base]+quick(right)
def count(list_):
'''
需要元素都是整型
'''
min_,max_ = list_[0],list_[0]
for i in range(1,len(list_)):
if list_[i]<min_:
min_ = list_[i]
if list_[i]>max_:
max_ = list_[i]
count_list = [0]*(max_-min_+1)
for item in list_:
count_list[item-min_] += 1
list_ = []
for i in range(len(count_list)):
for j in range(count_list[i]):
list_.append(i+min_)
return list_
def heap(list_):
'''
'''
pass
def bucket(list_):
'''
每个桶使用选择排序,分桶方式为最大值除以5,也就是分为5个桶
桶排序的速度取决于分桶的方式
'''
bucket = [[],[],[],[],[]] # 注意长度为5
max_ = list_[0]
for item in list_[1:]:
if item > max_:
max_ = item
gap = max_/5 # 对应bucket的长度
for item in list_:
bucket[int((item-1)/gap)].append(item)
for i in range(len(bucket)):
bucket[i] = select(bucket[i])
list_ = []
for item in bucket:
list_ += item
return list_
def radix(list_):
'''
基数排序:对数值的不同位数分别进行排序,比如先从个位开始,然后十位,百位,以此类推;
注意此处代码是假设待排序数值都是整型
'''
max_ = list_[0]
for item in list_[1:]:
if item > max_:
max_ = item
max_radix = len(str(max_))
radix_list = [[],[],[],[],[],[],[],[],[],[]] # 对应每个位上可能的9个数字
cur_radix = 0
while cur_radix<max_radix:
base = 10**cur_radix
for item in list_:
radix_list[int(item/base)%10].append(item)
list_ = []
for item in radix_list:
list_ += item
radix_list = [[],[],[],[],[],[],[],[],[]] # 对应每个位上可能的9个数字
cur_radix += 1
return list_
def test(name,sort_func,times,info,idea,*param):
list_ = [1,2,3,4,5,6,7,8,9,10]
print(name+' Sort:')
print('\t'+info)
print('\t'+idea)
print('\tTimes: '+str(times))
start_time = time.time()
for i in range(times):
random.shuffle(list_)
#print('\tInput: '+str(list_))
list_ = sort_func(list_) if len(param)<=0 else sort_func(list_,param[0])
#print('\tOutput: '+str(list_))
#print('\t'+str(list_))
print('\tCost time: '+str(time.time()-start_time))
if __name__ == "__main__":
test('Bubble',bubble,100000,'O(n^2), O(1), 稳定, 比较排序','思路: 循环的从头向后遍历,直到没有需要交换位置的两个元素为止')
test('Select',select,100000,'O(n^2), O(1), 不稳定, 比较排序','思路: 从头到尾依次将后续序列中最小的数字放到当前位置')
test('Insert',insert,100000,'O(n^2), O(1), 稳定, 比较排序','思路: 从头到尾将每个元素插入到前面的已排序序列中合适的位置,插入后后面的元素都向后移动')
test('Shell(gap=len/2)',shell,100000,'O(nlogn), O(1), 不稳定, 比较排序','思路: 将序列根据gap分组,并不断细分直到只有1,每个组使用直接插入排序,有点分治法的意思,gap的选择是个难题,通常默认为len/2')
test('Shell(gap=3)',shell,100000,'O(nlogn), O(1), 不稳定, 比较排序','思路: 将序列根据gap分组,并不断细分直到只有1,每个组使用直接插入排序,有点分治法的意思,gap的选择是个难题,通常默认为len/2',3)
test('Shell(gap=2)',shell,100000,'O(nlogn), O(1), 不稳定, 比较排序','思路: 将序列根据gap分组,并不断细分直到只有1,每个组使用直接插入排序,有点分治法的意思,gap的选择是个难题,通常默认为len/2',2)
test('Merge',merge,100000,'O(nlogn), O(n), 稳定, 比较排序','思路: 基于分治法进行归并操作,既然是分治法,那么用递归解决是最简单的实现')
test('Quick',quick,100000,'O(nlogn), O(logn), 不稳定, 比较排序','思路: 同样基于分治法,通过指定某个元素为基准,小于基准的放到左边序列,大于的放到右边,递归的使左右序列有序即可')
# test('Heap',heap,100000,'O(nlogn), O(1), 不稳定, 比较排序','思路: 利用堆的性质构建完全二叉树')
test('Count',count,100000,'O(n+k), O(k), 稳定, 非比较排序','思路: 构造数组用于存储待排序数组中各个元素的个数,元素值作为新数组的下标')
test('Bucket',bucket,100000,'O(n+k), O(n+k), 稳定, 非比较排序','思路: 将元素根据某种规则映射到N个桶中,对每个桶进行排序后,将各个桶内元素依次读出来即可')
test('Radix',radix,100000,'O(n*k), O(n+k), 稳定, 非比较排序','思路: 针对各个元素的某一位依次进行排序,直到最高位为止')
# print(heap([4,6,8,3,5,10,9,2,1,7]))
最后
大家可以到我的Github上看看有没有其他需要的东西,目前主要是自己做的机器学习项目、Python各种脚本工具、有意思的小项目以及Follow的大佬、Fork的项目等:
https://github.com/NemoHoHaloAi
python实现十大经典排序算法的更多相关文章
- 用Python实现十大经典排序算法-插入、选择、快速、冒泡、归并等
本文来用图文的方式详细讲解了Python十大经典排序算法 —— 插入排序.选择排序.快速排序.冒泡排序.归并排序.希尔排序.插入排序.桶排序.基数排序.计数排序算法,想要学习的你们,继续阅读下去吧,如 ...
- Python实现十大经典排序算法(史上最简单)。
十大排序算法(Python实现)一. 算法介绍及相关概念解读 算法分类十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn), ...
- Python实现十大经典排序算法(史上最简单)
十大排序算法(Python实现)一. 算法介绍及相关概念解读 算法分类十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn), ...
- python基础__十大经典排序算法
用Python实现十大经典排序算法! 排序算法是<数据结构与算法>中最基本的算法之一.排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大, ...
- 十大经典排序算法(python实现)(原创)
个人最喜欢的排序方法是非比较类的计数排序,简单粗暴.专治花里胡哨!!! 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 ...
- 十大经典排序算法最强总结(含Java、Python码实现)
引言 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法.排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面 ...
- 十大经典排序算法+sort排序
本文转自:十大经典排序算法,其中有动图+代码详解,本文简单介绍+个人理解. 排序算法 经典的算法问题,也是面试过程中经常被问到的问题.排序算法简单分类如下: 这些排序算法的时间复杂度等参数如下: 其中 ...
- 十大经典排序算法的 JavaScript 实现
计算机领域的都多少掌握一点算法知识,其中排序算法是<数据结构与算法>中最基本的算法之一.排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大 ...
- JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(图文并茂)
1. 前言 算法为王. 想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手:只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 ...
随机推荐
- 一步到位datatabls中文化
#一步到位datatabls中文化 加入以下代码 $(document).ready(function () { $('#declarationList').DataTable({ destroy:t ...
- 爬虫(二)requests 登陆某检索网站
1 import requests import os from PIL import Image import pytesseract import re rootUrl = xxx # 构建登录页 ...
- JZOJ 5328. 【NOIP2017提高A组模拟8.22】世界线
5328. [NOIP2017提高A组模拟8.22]世界线 (File IO): input:worldline.in output:worldline.out Time Limits: 1500 m ...
- Yuchuan_Linux_C 编程之十一 进程间通信
一.整体大纲 二.进程间通信概念及方法 Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能相互访问,要交换 ...
- jsp内置对象(三)-----response对象
response对象 response对象包含了响应客户端请求的有关信息,但在JSP中很少直接用到它.他是HttpServletResponse类的实例,response对象具有页面作用域,即访问一 ...
- Python入门的三大问题和三大谎言
Python广告,铺天盖地,小白们雾里看花,Python无限美好.作为会20几种语言(BASIC Foxbase/pro VB VC C C++ c# js typescript HTML Ardui ...
- web前端问题整理
1.常用那几种浏览器测试?有哪些内核(Layout Engine)? (Q1)浏览器:IE,Chrome,FireFox,Safari,Opera (Q2)内核:Trident,Gecko,Prest ...
- ES6的函数
1,带参数默认值的函数 JS函数有个独特的行为:可以接受任意数量的参数,而无视函数声明的形参数量.未提供的参数会使用默认值来代替.实际传递的参数允许少于或多于正式指定的参数. 在ES6中可以直接在形参 ...
- NSInteger打印以及字符串的转换
You can also use %zd (NSInteger) and %tu (NSUInteger) when logging to the console. NSInteger integer ...
- div隐藏滚动条,仍可滚动
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...