如何使用keras加载下载好的数据集
https://blog.csdn.net/houchaoqun_xmu/article/details/78492718
【keras】解决 example 案例中 MNIST 数据集下载不了的问题
前言:
keras 源码中下载MNIST的方式是 path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz'),数据源是通过 url = https://s3.amazonaws.com/img-datasets/mnist.npz 进行下载的。访问该 url 地址被墙了,导致 MNIST 相关的案例都卡在数据下载的环节。本文主要提供解决方案,让需要的读者可以跑案例的代码感受一下。
本文的贡献主要包括如下:
1)提供 mnist_npz 数据集;
2)分析了关于 mnist 几个相关的源代码;
3)提供了一种能够顺利运行 keras 源码中 example 下 mnist 的相关案例;
4)找到了另外几种解决方案,提供了相关的链接。
numpy.load(path)
numpy.load() 函数起到很重要的作用。它可以读取 .npy .npz 等文件类型,并返回对应的数据类型。
1)如果文件类型是 .pny 则返回一个1维数组。
2)如果文件类型是 .npz 则返回一个类似字典的数据类型,包含 {filename: array} 键值对。如,本例中的键值对如下所示:
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
详情请参考:https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
原始 .\keras\examples\mnist_mlp.py
- # -*- coding: utf-8 -*-
- '''Trains a simple deep NN on the MNIST dataset.
- Gets to 98.40% test accuracy after 20 epochs
- (there is *a lot* of margin for parameter tuning).
- 2 seconds per epoch on a K520 GPU.
- '''
- from __future__ import print_function
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout
- from keras.optimizers import RMSprop
- batch_size = 128
- num_classes = 10
- epochs = 20
- # the data, shuffled and split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(60000, 784)
- x_test = x_test.reshape(10000, 784)
- x_train = x_train.astype('float32')
- x_test = x_test.astype('float32')
- x_train /= 255
- x_test /= 255
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- model = Sequential()
- model.add(Dense(512, activation='relu', input_shape=(784,)))
- model.add(Dropout(0.2))
- model.add(Dense(512, activation='relu'))
- model.add(Dropout(0.2))
- model.add(Dense(10, activation='softmax'))
- model.summary()
- ###
- # 1)categorical_crossentropy(output, target, from_logits=False):
- # 计算输出张量和目标张量的Categorical crossentropy(类别交叉熵),目标张量与输出张量必须shape相同。
- # 多分类的对数损失函数,与softmax分类器相对应的。
- #
- # 2)RMSprop()
- # AdaGrad算法的改进。鉴于神经网络都是非凸条件下的,RMSProp在非凸条件下结果更好,改变梯度累积为指数衰减的移动平均以丢弃遥远的过去历史。
- # reference:http://blog.csdn.net/bvl10101111/article/details/72616378
- #
- model.compile(loss='categorical_crossentropy',
- optimizer=RMSprop(),
- metrics=['accuracy'])
- history = model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
.\keras\keras\datasets\mnist.py - load_data()
- # -*- coding: utf-8 -*-
- from ..utils.data_utils import get_file
- import numpy as np
- def load_data(path='mnist.npz'):
- """Loads the MNIST dataset.
- # Arguments
- path: path where to cache the dataset locally
- (relative to ~/.keras/datasets).
- # Returns
- Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
- # numpy.load()
- # numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII')
- # 1) Load arrays or pickled objects from .npy, .npz or pickled files
- # 2)
- # reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
- """
- path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz')
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
- return (x_train, y_train), (x_test, y_test)
下载 mnist.npz 数据集
本文使用的 mnist.npz 数据集是通过一个 japan 的服务器下载得到的,在此免费分享给大家。如果下载有问题的话,可以留言哈。
下载链接:https://pan.baidu.com/s/1jH6uFFC 密码: dw3d
改造 mnist_mlp.py
方法1:
mnist_mlp.py 源码是使用如下命令获取数据集:
- # the data, shuffled and split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
调用的是 .\keras\keras\datasets\mnist.py 脚本中的 def load_data(path='mnist.npz') 函数,也就是因为网址被墙了导致不能正常运行的原因。本文事先下好了 mnist.npz 数据集,然后改动了一些代码使之正常运行。换句话说,本文使用的是“读取本地数据集”的方法,步骤如下:
1)下载好 mnist_npz 数据集,并将其放于 .\keras\examples 目录下。
2)改动后的 mnist_mlp.py 代码如下:
- # -*- coding: utf-8 -*-
- '''Trains a simple deep NN on the MNIST dataset.
- Gets to 98.40% test accuracy after 20 epochs
- (there is *a lot* of margin for parameter tuning).
- 2 seconds per epoch on a K520 GPU.
- '''
- from __future__ import print_function
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout
- from keras.optimizers import RMSprop
- batch_size = 128
- num_classes = 10
- epochs = 20
- # the data, shuffled and split between train and test sets
- # (x_train, y_train), (x_test, y_test) = mnist.load_data()
- import numpy as np
- path='./mnist.npz'
- f = np.load(path)
- x_train, y_train = f['x_train'], f['y_train']
- x_test, y_test = f['x_test'], f['y_test']
- f.close()
- x_train = x_train.reshape(60000, 784).astype('float32')
- x_test = x_test.reshape(10000, 784).astype('float32')
- x_train /= 255
- x_test /= 255
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- # label为0~9共10个类别,keras要求格式为binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- # add by hcq-20171106
- # Dense of keras is full-connection.
- model = Sequential()
- model.add(Dense(512, activation='relu', input_shape=(784,)))
- model.add(Dropout(0.2))
- model.add(Dense(512, activation='relu'))
- model.add(Dropout(0.2))
- model.add(Dense(num_classes, activation='softmax'))
- model.summary()
- model.compile(loss='categorical_crossentropy',
- optimizer=RMSprop(),
- metrics=['accuracy'])
- history = model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
运行效果如下所示:
- 60000 train samples
- 10000 test samples
- _________________________________________________________________
- Layer (type) Output Shape Param #
- =================================================================
- dense_1 (Dense) (None, 512) 401920
- _________________________________________________________________
- dropout_1 (Dropout) (None, 512) 0
- _________________________________________________________________
- dense_2 (Dense) (None, 512) 262656
- _________________________________________________________________
- dropout_2 (Dropout) (None, 512) 0
- _________________________________________________________________
- dense_3 (Dense) (None, 10) 5130
- =================================================================
- Total params: 669,706
- Trainable params: 669,706
- Non-trainable params: 0
- _________________________________________________________________
- Train on 60000 samples, validate on 10000 samples
- Epoch 1/20
- 2017-11-09 23:06:16.881800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
- ... ...
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0387 - acc: 0.9888 - val_loss: 0.0706 - val_acc: 0.9814
- Epoch 8/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0341 - acc: 0.9899 - val_loss: 0.0789 - val_acc: 0.9827
- Epoch 9/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0304 - acc: 0.9911 - val_loss: 0.0851 - val_acc: 0.9833
- Epoch 10/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0290 - acc: 0.9918 - val_loss: 0.0867 - val_acc: 0.9818
- Epoch 11/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0264 - acc: 0.9924 - val_loss: 0.0881 - val_acc: 0.9833
- Epoch 12/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0261 - acc: 0.9928 - val_loss: 0.1095 - val_acc: 0.9801
- Epoch 13/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0246 - acc: 0.9931 - val_loss: 0.1012 - val_acc: 0.9830
- Epoch 14/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0233 - acc: 0.9935 - val_loss: 0.1116 - val_acc: 0.9812
- Epoch 15/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0223 - acc: 0.9942 - val_loss: 0.1016 - val_acc: 0.9832
- Epoch 16/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0214 - acc: 0.9943 - val_loss: 0.1053 - val_acc: 0.9832
- Epoch 17/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0178 - acc: 0.9950 - val_loss: 0.1095 - val_acc: 0.9838
- Epoch 18/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0212 - acc: 0.9949 - val_loss: 0.1158 - val_acc: 0.9822
- Epoch 19/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0197 - acc: 0.9951 - val_loss: 0.1112 - val_acc: 0.9831
- Epoch 20/20
- 60000/60000 [==============================] - 1s 23us/step - loss: 0.0203 - acc: 0.9951 - val_loss: 0.1097 - val_acc: 0.9833
- Test loss: 0.109655842465
- Test accuracy: 0.9833
方法2:参考该【博文】
(x_train, y_train), (x_test, y_test) = mnist.load_data(path='/home/duchao/下载/mnist.npz')
Reference:
keras 中文文档:http://keras-cn.readthedocs.io/en/latest/
阅读源码遇到的一些TF、keras函数及问题:http://blog.csdn.net/jsliuqun/article/details/64444302
python读取mnist数据集:https://blog.mythsman.com/2016/01/25/1/
如何使用keras加载下载好的数据集的更多相关文章
- 【tf.keras】tf.keras加载AlexNet预训练模型
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...
- 使用Huggingface在矩池云快速加载预训练模型和数据集
作为NLP领域的著名框架,Huggingface(HF)为社区提供了众多好用的预训练模型和数据集.本文介绍了如何在矩池云使用Huggingface快速加载预训练模型和数据集. 1.环境 HF支持Pyt ...
- pytorch加载语音类自定义数据集
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.u ...
- ubuntu wubi.exe 直接加载下载好的 amd64.tar.xz
玩了这么久的LINUX,一直都是直机装UBUNTU,虚一下XP的,后来不得不直机用WIN7,只能WUBI装一下UBUNTU了.不得不说,在WIN7下虚一个UBUNTU真是相当麻烦.网络那块很是难搞,而 ...
- keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?
本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...
- [Tensorflow] 使用 tf.keras.utils.get_file() 下载 MS-COCO 2014 数据集
import argparse import tensorflow as tf tf.enable_eager_execution() def main(args): ""&quo ...
- Keras.applications.models权重:存储路径及加载
网络中断原因导致keras加载vgg16等模型权重失败, 直接解决方法是:删掉下载文件,再重新下载 Windows-weights路径: C:\Users\你的用户名\.keras\models Li ...
- Python 动态加载并下载"梨视频"短视频
下载链接:http://www.pearvideo.com/category_1 import requests from lxml import etree import re from urlli ...
- TensorFlow2.0(10):加载自定义图片数据集到Dataset
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- 箭头函数this
箭头函数的this值是由包含它的函数(非箭头函数)来决定的,与包含的函数的this指向一致,如果包裹它的不是函数(直到找到最外层)则this指向全局对象 并且箭头函数的this是固定的,由定义它时所在 ...
- Elasticsearch 使用集群
章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...
- Linux运维命令笔记一
1.Centos 无netstat 命令 yum -y install net-toolnetstat -tunp 2.Centos防火墙 systemctl stop firewalld.ser ...
- Ubuntu Navicat链接mysql (9.17第六天)
Navicat链接MySQL 首先要在虚拟机里面下载好MySQL,在宿主机里面下载好Navicat Navicat下载及安装教程:https://blog.csdn.net/jsnhux/articl ...
- javascript 解决provisional headers are shown的过程
请求没有被发送,因为是载入缓存资源. 大概是说 完全相同的请求间隔数毫秒(太短),导致加载失败,查看了chrome控制台发现 Provisional headers are shown 出现在 载入缓 ...
- MacOS Safari无响应卡死解决方法
之前也是用的好好的,突然一次进入一个网页就卡死了,强制退出,后面再重新进入Safari都会处于卡死状态,一直找不到解决方法,Safari也不能卸载重装,想着得等到更新系统或者重装系统,今天看到贴吧一个 ...
- Day3-T3
原题目 Describe:又是这种最大子矩阵捆绑一堆条件的题 code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define j ...
- IntelliJ IDEA ULTIMATE 2019.3 破解注册详细教程【亲测有效,持续更新~】
申明:本教程 IntelliJ IDEA 破解补丁.激活码均收集于网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除. 注意 本教程适用于 IntelliJ IDEA 所有版本,请放心食用 ...
- swift中使用UIColllectionView实现横向轮播的一般方法
// // HomeLiveRankCell.swift // YYSwiftProject // // Created by Domo on 2018/7/28. // Copyright ...
- tensorflow应用于手写数字识别(第二版)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data#载入数据集 mnist = inp ...