=================第2周 神经网络基础===============

===2.1  二分分类===

===2.2  logistic 回归===

  It turns out, when you implement you implement your neural network, it will be easier to just keep b and w as separate parameters. 本课程中将分开考虑它们。

===2.3  logistic 回归损失函数===
  损失函数loss func是在单个样本上定义的,而代价函数cost func它衡量在全体训练样本上的表现。其实Logistic Model 可以被看作是 一个非常小的神经网络。
 
===2.4  梯度下降法===
  凸函数这性质是我们使用logistic回归的这个特定成本函数J的重要原因之一。通常用0来初始化<w, b>,其他初始化也ok。
  仔细体会下图,梯度,梯度的正负,负梯度才是下降方向。也体会下,如果某点的梯度为正,那w增大,J也会增大。
 
===2.5  导数===
  一个直观的理解是,delta_y的变化是 delta_x 的变化的 dy/dx 倍。导数的定义是你右移a 一个不可度量的无限小的值, f(a)会增加 df/da times a的改变值。
 
 
===2.6  更多导数的例子===
 
===2.7  计算图=== &
===2.8  计算图的导数计算===
  仔细体会一下,求导的链式法则,当a改变0.001时,J改变多少,a是如何影响J的。
 
 
===2.9  logistic 回归中的梯度下降法===
 
===2.10  m 个样本的梯度下降===
  m个样本的梯度下降的逐样本迭代版本。当你应用深度算法时,你会发现在代码中显式地使用for循环会使算法很低效。
 
===2.11  向量化===
  下面的比较可以看出,向量化了之后快了大概 300 倍。
       
 
  GPU和CPU都有并行化的指令,有时候会叫做SIMD指令(single instruction multiple data.),意思是如果你使用了这样的内置函数np.function or other functions that don't require you explicitly implementing a for loop. It enables Python numpy to take much better advantage of parallelism. 这点对GPU和CPU上面计算都是成立的,GPU非常擅长SIMD计算,but CPU is actually also not too bad at that. 经验法则是 只要有其他可能 就不要使用显式for循环。
 
 
===2.12  向量化的更多例子===
  尝试用numpy内置函数代替显示loop实现你想要的功能。
 
===2.13  向量化 logistic 回归===
 
===2.14  向量化 logistic 回归的梯度输出===
 
 
===2.15  Python 中的广播===
  Broadcasting。例子中的 cal 后面的 reshape 其实可以不用加,但当我编写Python代码时,if I'm not entirely sure what matrix, whether the dimensions of a matrix, 我会经常调用reshape命令 确保它是正确的列向量或行向量。
 
===2.16  关于 python / numpy 向量的说明===
  注意在 In[7] 的这个数据结构中 有2个方括号,之前只有1个,So that's the difference between this is really a 1 by 5 matrix versus one of these rank 1 arrays

  rank 1 array 的行为和行向量或列向量都不一样,which makes some of its effects nonintuitive. 我的建议是不要使用它们。如果某些时候确实得到了rank 1 array,你可以用reshape,使它的行为更好预测。

===2.17  Jupyter / Ipython 笔记本的快速指南===
  使用愉快:)
 
===2.18  (选修)logistic代价函数的推导===
  If you assume that the training examples I've drawn independently or drawn IID, then the probability of the example is the product of probabilities. 从1到m的 p(y^(i) |x^(i))的概率乘积。
 
 
 

Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 2. 神经网络基础)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 3—多分类逻辑回归和神经网络

    作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCo ...

  2. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 1. 深度学习概论)

     =================第1周 循环序列模型=============== ===1.1 欢迎来到深度学习工程师微专业=== 我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问 ...

  3. 百度首席科学家 Andrew Ng谈深度学习的挑战和未来(转载)

    转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学 ...

  4. 《Andrew Ng深度学习》笔记1

    深度学习概论 1.什么是神经网络? 2.用神经网络来监督学习 3.为什么神经网络会火起来? 1.什么是神经网络? 深度学习指的是训练神经网络.通俗的话,就是通过对数据的分析与计算发现自变量与因变量的映 ...

  5. 《Andrew Ng深度学习》笔记4

    浅层神经网络 1.激活函数 在神经网络中,激活函数有很多种,常用的有sigmoid()函数,tanh()函数,ReLu函数(修正单元函数),泄露ReLu(泄露修正单元函数).它们的图形如下: sigm ...

  6. 《Andrew Ng深度学习》笔记3

    浅层神经网络 初步了解了神经网络是如何构成的,输入+隐藏层+输出层.一般从输入层计算为层0,在真正计算神经网络的层数时不算输入层.隐藏层实际就是一些算法封装成的黑盒子.在对神经网络训练的时候,就是对神 ...

  7. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  8. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  9. DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络

    介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程 ...

  10. [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...

随机推荐

  1. python之robotframework+ride测试框架

    一.robotframework简介 Robot Framework是一款python编写的功能自动化测试框架.具备良好的可扩展性,支持关键字驱动,可以同时测试多种类型的客户端或者接口,可以进行分布式 ...

  2. 基于RBAC的权限控制浅析(结合Spring Security)

    嗯,昨天面试让讲我的项目,让我讲讲项目里权限控制那一块的,讲的很烂.所以整理一下. 按照面试官的提问流程来讲: 一.RBAC是个啥东西了? RBAC(Role-Based Access Control ...

  3. Rocket - tilelink - first

    https://mp.weixin.qq.com/s/0nzkV4K1osNEQzrtITYxmw   介绍Edges中first/last/done的实现.   ​​   1. firstlastH ...

  4. 【HBase】表的version

    建表.添加数据 Examples: hbase> create 'ns1:t1', 'f1', SPLITS => ['10', '20', '30', '40'] hbase> c ...

  5. Window10:不能建立到远程计算机的连接,你可能需要更改此连接的网络设置。

    一,右键我的电脑点击管理. 二,在系统工具中找到设备管理,在设备管理中找到网络适配器. 三,在网络适配器中找到WAN Miniport(IP) 四,找到WAN Miniport(IP)右键放心卸载,作 ...

  6. Java实现 LeetCode 413 等差数列划分

    413. 等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, - ...

  7. [C#.NET 拾遗补漏]02:数组的几个小知识

    阅读本文大概需要 1.5 分钟. 数组本身相对来说比较简单,能想到的可写的东西不多.但还是有一些知识点值得总结和知晓一  下.有的知识点,知不知道不重要,工作中用的时候搜索一下就可以了,毕竟实现一个功 ...

  8. tensorflow2.0学习笔记第二章第一节

    2.1预备知识 # 条件判断tf.where(条件语句,真返回A,假返回B) import tensorflow as tf a = tf.constant([1,2,3,1,1]) b = tf.c ...

  9. nginx下通过子路径配置多个vue单页应用的方法

    千辛万苦在Stack Overflow上找来的,记下吧. https://stackoverflow.com/q/31519505/13651734 我的需求是 首页:/ 项目a:/aaa 项目 b: ...

  10. jstl中<c:if>标签属性用法

    今天用jstl+el从session域中获取属性,遇到了问题 org.apache.jasper.JasperException: <h3>Validation error message ...