df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv")
df["Date"] = pd.to_datetime(df["Date"], format='%d-%m-%Y')
df.head()

import datetime

def scatter_plot(cnt_srs, color):
trace = go.Scatter(
x=cnt_srs.index[::-1],
y=cnt_srs.values[::-1],
showlegend=False,
marker=dict(
color=color,
),
)
return trace cnt_srs = df["POONDI"]
cnt_srs.index = df["Date"]
trace1 = scatter_plot(cnt_srs, 'red') cnt_srs = df["CHOLAVARAM"]
cnt_srs.index = df["Date"]
trace2 = scatter_plot(cnt_srs, 'blue') cnt_srs = df["REDHILLS"]
cnt_srs.index = df["Date"]
trace3 = scatter_plot(cnt_srs, 'green') cnt_srs = df["CHEMBARAMBAKKAM"]
cnt_srs.index = df["Date"]
trace4 = scatter_plot(cnt_srs, 'purple') subtitles = ["Water Availability in Poondi reservoir - in mcft",
"Water Availability in Cholavaram reservoir - in mcft",
"Water Availability in Redhills reservoir - in mcft",
"Water Availability in Chembarambakkam reservoir - in mcft"
]
fig = tools.make_subplots(rows=4, cols=1, vertical_spacing=0.08,
subplot_titles=subtitles)
fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 2, 1)
fig.append_trace(trace3, 3, 1)
fig.append_trace(trace4, 4, 1)
fig['layout'].update(height=1200, width=800, paper_bgcolor='rgb(233,233,233)')
py.iplot(fig, filename='h2o-plots')

df["total"] = df["POONDI"] + df["CHOLAVARAM"] + df["REDHILLS"] + df["CHEMBARAMBAKKAM"]
df["total"] = df["POONDI"] + df["CHOLAVARAM"] + df["REDHILLS"] + df["CHEMBARAMBAKKAM"] cnt_srs = df["total"]
cnt_srs.index = df["Date"]
trace5 = scatter_plot(cnt_srs, 'red') fig = tools.make_subplots(rows=1, cols=1, vertical_spacing=0.08,
subplot_titles=["Total water availability from all four reservoirs - in mcft"])
fig.append_trace(trace5, 1, 1) fig['layout'].update(height=400, width=800, paper_bgcolor='rgb(233,233,233)')
py.iplot(fig, filename='h2o-plots')

rain_df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_rainfall.csv")
rain_df["Date"] = pd.to_datetime(rain_df["Date"], format='%d-%m-%Y') rain_df["total"] = rain_df["POONDI"] + rain_df["CHOLAVARAM"] + rain_df["REDHILLS"] + rain_df["CHEMBARAMBAKKAM"]
rain_df["total"] = rain_df["POONDI"] + rain_df["CHOLAVARAM"] + rain_df["REDHILLS"] + rain_df["CHEMBARAMBAKKAM"] def bar_plot(cnt_srs, color):
trace = go.Bar(
x=cnt_srs.index[::-1],
y=cnt_srs.values[::-1],
showlegend=False,
marker=dict(
color=color,
))
return trace rain_df["YearMonth"] = pd.to_datetime(rain_df["Date"].dt.year.astype(str) + rain_df["Date"].dt.month.astype(str), format='%Y%m') cnt_srs = rain_df.groupby("YearMonth")["total"].sum()
trace5 = bar_plot(cnt_srs, 'red') fig = tools.make_subplots(rows=1, cols=1, vertical_spacing=0.08,
subplot_titles=["Total rainfall in all four reservoir regions - in mm"])
fig.append_trace(trace5, 1, 1) fig['layout'].update(height=400, width=800, paper_bgcolor='rgb(233,233,233)')
py.iplot(fig, filename='h2o-plots')

rain_df["Year"] = pd.to_datetime(rain_df["Date"].dt.year.astype(str), format='%Y')

cnt_srs = rain_df.groupby("Year")["total"].sum()
trace5 = bar_plot(cnt_srs, 'red') fig = tools.make_subplots(rows=1, cols=1, vertical_spacing=0.08,
subplot_titles=["Total yearly rainfall in all four reservoir regions - in mm"])
fig.append_trace(trace5, 1, 1) fig['layout'].update(height=400, width=800, paper_bgcolor='rgb(233,233,233)')
py.iplot(fig, filename='h2o-plots')

temp_df = df[(df["Date"].dt.month==2) & (df["Date"].dt.day==1)]

cnt_srs = temp_df["total"]
cnt_srs.index = temp_df["Date"]
trace5 = bar_plot(cnt_srs, 'red') fig = tools.make_subplots(rows=1, cols=1, vertical_spacing=0.08,
subplot_titles=["Availability of total reservoir water (4 major ones) at the beginning of summer"])
fig.append_trace(trace5, 1, 1) fig['layout'].update(height=400, width=800, paper_bgcolor='rgb(233,233,233)')
py.iplot(fig, filename='h2o-plots')

结论:
2004年的水资源短缺使维拉南湖成为城市供水的新途径。
希望目前的缺水能为这个陷入困境的城市带来更多额外的水源。在过去的15年里,这个城市发展了很多,因此需要额外的水资源来满足需求。
城市需要通过提前估计需求来设计更好的稀缺控制方法。现在,
“只有下雨才能拯救这座城市!”

吴裕雄--天生自然 PYTHON数据分析:钦奈水资源管理分析的更多相关文章

  1. 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  2. 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  3. 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  4. 吴裕雄--天生自然 python数据分析:葡萄酒分析

    # import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...

  5. 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析

    import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...

  6. 吴裕雄--天生自然 python数据分析:医疗费数据分析

    import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sn ...

  7. 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据

    #We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...

  8. 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集

    import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mp ...

  9. 吴裕雄--天生自然 PYTHON数据分析:医疗数据分析

    import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.rea ...

随机推荐

  1. Django专题-ugettext_lazy

    标准翻译 使用函数 ugettext() 来指定一个翻译字符串. 作为惯例,使用短别名 _ 来引入这个函数以节省键入时间. 在下面这个例子中,文本 "Welcome to my site&q ...

  2. Linux分区挂载

    Liunx采用树形的文件管理系统,也就是在Linux系统中,可以说已经没有分区的概念了.分区在Linux和其他设备一样都只是一个文件.要使用一个分区必须把它加载到文件系统中.这可能难于理解,继续往下看 ...

  3. Mybatis入门——基础方式的增删该查、mapper动态代理方式的CRUD、类型转换器

    一.基础方式的增删该查: 1.mybatis约定:输入参数parameterType和输出参数resulrType在形式上只能有一个. 2.如果输入/输出参数:是简单类型(8个基本类型加String) ...

  4. CSS公共样式模版

    CSS文件命名为global.css,一般此CSS文件是用于装全站主要框架CSS样式代码和初始化的CSS样式. 通常会放初始化CSS代码如下: body, div, ul, ol, dl, dt, d ...

  5. iOS 一个新方法:- (void)makeObjectsPerformSelector:(SEL)aSelector;

    NSArray 里面的一个方法, - (void)makeObjectsPerformSelector:(SEL)aSelector: 这是一个类似于执行for循环的方法,可以这样用,当需要删除一个v ...

  6. 5.windows-oracle实战第五课 --事务、函数

    什么是事务        事务用于保证数据的一致性,它由一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败. 事务和锁        当执行一个事务dml的时候,oracle会被作用 ...

  7. c# winform清空ie缓存的几种方法

    很明显 IE的缓存在其目录中显示的并不是真正的文件所处的位置,文件的位置是在隐藏的文件夹中,而且这个隐藏的文件夹我们一般找不到.在网上几种清空缓存的方法,在此我一一把代码和处理的效果显示出来.供大家参 ...

  8. ELK_疑难杂症处理

    一.ELK实用知识点总结 1.编码转换问题 这个问题,主要就是中文乱码. input中的codec=>plain转码: codec => plain {charset => &quo ...

  9. Okhttp教程 (1)

    1. 在build.gradle里引入okhttp库 dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) testComp ...

  10. linux压缩管理系统

    Linux压缩管理系统windows        rar       zipLinux       zip        tar.gz       tar.bz2       tar.xz 压缩的好 ...