吴裕雄--天生自然 R语言开发学习:基本数据管理(续二)










#---------------------------------------------------------#
# R in Action (2nd ed): Chapter 4 #
# Basic data management #
# requires that the reshape2 and sqldf packages have #
# been installed #
# install.packages(c('reshape2', 'sqldf')) #
#---------------------------------------------------------# # leadership dataset
manager <- c(1,2,3,4,5)
date <- c("10/24/08","10/28/08","10/1/08","10/12/08","5/1/09")
gender <- c("M","F","F","M","F")
age <- c(32,45,25,39,99)
q1 <- c(5,3,3,3,2)
q2 <- c(4,5,5,3,2)
q3 <- c(5,2,5,4,1)
q4 <- c(5,5,5,NA,2)
q5 <- c(5,5,2,NA,1)
leadership <- data.frame(manager,date,gender,age,q1,q2,q3,q4,q5,
stringsAsFactors=FALSE) # Listing 4.2 - Creating new variables
mydata<-data.frame(x1 = c(2, 2, 6, 4),
x2 = c(3, 4, 2, 8))
mydata$sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2
attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)
mydata <- transform(mydata,
sumx = x1 + x2,
meanx = (x1 + x2)/2) # Recoding variables
leadership$agecat[leadership$age > 75] <- "Elder"
leadership$agecat[leadership$age >= 55 &
leadership$age <= 75] <- "Middle Aged"
leadership$agecat[leadership$age < 55] <- "Young" leadership <- within(leadership,{
agecat <- NA
agecat[age > 75] <- "Elder"
agecat[age >= 55 & age <= 75] <- "Middle Aged"
agecat[age < 55] <- "Young" }) # Renaming variables with the plyr package
names(leadership)
names(leadership)[2] <- "testDate"
leadership library(plyr)
leadership <- rename(leadership,
c(manager="managerID", date="testDate")) # Applying the is.na() function
is.na(leadership[, 6:10]) # Recode 99 to missing for the variable age
leadership[age == 99, "age"] <- NA
leadership # Excluding missing values from analyses
x <- c(1, 2, NA, 3)
y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x) x <- c(1, 2, NA, 3)
y <- sum(x, na.rm=TRUE) # Listing 4.4 - Using na.omit() to delete incomplete observations
leadership
newdata <- na.omit(leadership)
newdata # Converting character values to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13")) strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y") # Woring with formats
today <- Sys.Date()
format(today, format="%B %d %Y")
format(today, format="%A") # Calculations with with dates
startdate <- as.Date("2004-02-13")
enddate <- as.Date("2009-06-22")
enddate - startdate # Date functions and formatted printing
today <- Sys.Date()
dob <- as.Date("1956-10-12")
difftime(today, dob, units="weeks") # Listing 4.5 - Converting from one data type to another
a <- c(1,2,3)
a
is.numeric(a)
is.vector(a)
a <- as.character(a)
a
is.numeric(a)
is.vector(a)
is.character(a) # Sorting a dataset
newdata <- leadership[order(leadership$age),] attach(leadership)
newdata <- leadership[order(gender, age),]
detach(leadership) attach(leadership)
newdata <-leadership[order(gender, -age),]
detach(leadership) # Selecting variables
newdata <- leadership[, c(6:10)] myvars <- c("q1", "q2", "q3", "q4", "q5")
newdata <-leadership[myvars] myvars <- paste("q", 1:5, sep="")
newdata <- leadership[myvars] # Dropping variables
myvars <- names(leadership) %in% c("q3", "q4")
leadership[!myvars] # Listing 4.6 - Selecting observations
newdata <- leadership[1:3,]
newdata <- leadership[leadership$gender=="M" &
leadership$age > 30,]
attach(leadership)
newdata <- leadership[gender=='M' & age > 30,]
detach(leadership) # Selecting observations based on dates
startdate <- as.Date("2009-01-01")
enddate <- as.Date("2009-10-31")
newdata <- leadership[which(leadership$date >= startdate &
leadership$date <= enddate),] # Using the subset() function
newdata <- subset(leadership, age >= 35 | age < 24,
select=c(q1, q2, q3, q4))
newdata <- subset(leadership, gender=="M" & age > 25,
select=gender:q4) # Listing 4.7 - Using SQL statements to manipulate data frames
library(sqldf)
newdf <- sqldf("select * from mtcars where carb=1 order by mpg",
row.names=TRUE)
newdf
sqldf("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear
from mtcars where cyl in (4, 6) group by gear")
吴裕雄--天生自然 R语言开发学习:基本数据管理(续二)的更多相关文章
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:基础知识
1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:基本图形(续二)
#---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...
随机推荐
- pandas在指定列插入数据
import pandas as pd import numpy as np df = pd.DataFrame(np.arange(15).reshape(5, 3), columns=['a', ...
- python中的倒序遍历
1.在列表本身倒序 a = [1, 3, 7, 5, 2, 6] a.reverse() # 在列表本身进行倒序,不返回新的值 print(a) # 输出a: # [6, 2, 5, 7, 3, 1] ...
- PTA 自测-4 Have Fun with Numbers
#include<iostream> #include<string> #include<cstring> #include<vector> using ...
- redis 会丢数据吗
不管是以前的主从模式(哨兵模式),还是现在的集群模式,因为都用了slave of 同步; 而slave of 同步会丢弃本地数据,直接用对方的数据来覆盖本地,所以会丢失数据 1.主备网络不通,后续主节 ...
- 小白学习之pytorch框架(3)-模型训练三要素+torch.nn.Linear()
模型训练的三要素:数据处理.损失函数.优化算法 数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torc ...
- httpsqs 源码修改(内部自动复制多队列)
/* HTTP Simple Queue Service - httpsqs v1.7 Author: Zhang Yan (http://blog.s135.com), E-mail: net@s1 ...
- linux中ftp中文名乱码问题
问题触发环境 1. java中使用org.apache.commons.net.ftp.FTPClient包 2. 通过chrome浏览器的file标签上传文件 3. 在windows上部署的File ...
- org.apache.ibatis.binding.BindingException: Invalid bound statement (not found)报错
0 环境 系统环境:win10 1 正文 先检查Mapper接口与相关联xml文件是否对应,需要检查包名,namespace位置是否写对,curd时id名称等能否对应上 常规步骤: :检查mapper ...
- gitlab安装教程
gitlab安装教程 安装教程 官网安装方法 https://about.gitlab.com/downloads/#centos7 1.准备 sudo yum install curl po ...
- AOP统一处理修改人、创建人、修改时间、创建时间
1.配置拦截 首先开启 <aop:aspectj-autoproxy proxy-target-class="true"/>代理.解释一下下面..的意思是多个 < ...