Luogu_2434_[SDOI2005]区间
题目描述
现给定n个闭区间[ai, bi],1<=i<=n。这些区间的并可以表示为一些不相交的闭区间的并。你的任务就是在这些表示方式中找出包含最少区间的方案。你的输出应该按照区间的升序排列。这里如果说两个区间[a, b]和[c, d]是按照升序排列的,那么我们有a<=b<c<=d。
请写一个程序:
读入这些区间;
计算满足给定条件的不相交闭区间;
把这些区间按照升序输出。
输入输出格式
输入格式
第一行包含一个整数n,3<=n<=50000,为区间的数目。以下n行为对区间的描述,第i行为对第i个区间的描述,为两个整数1<=ai<bi<=1000000,表示一个区间[ai, bi]。
输出格式
输出计算出来的不相交的区间。每一行都是对一个区间的描述,包括两个用空格分开的整数,为区间的上下界。你应该把区间按照升序排序。
样例
INPUT
5
5 6
1 4
10 10
6 9
8 10
OUTPUT
1 4
5 10
HINT
SOLUTION
差分
感觉差分是我们这种涉及区间的处理的问题的很重要的一个考虑方式啊qwq
接下来有10行废话。
这题不难。
我想过贪心,想过区间dp,想过建树bfs,就是没想到差分。
先看数据范围:\(3\leq n \leq 50000,1\leq a_i<b_i\leq 1000000\),
首先我们就把\(O(n^2)\)的方案给毙掉了。
这种题不是\(O(n)\)就是\(O(nlogn)\),对吧。
建树不好建,建了也不知道怎么写,毙掉。
就剩\(O(n)\)的了。
dp?怎么写啊?我不会,毙掉。
贪心把区间从头开始往后拓,直到出现断点?那万一全部连起来了呢?不好找断点,毙掉。
然后把目光放在这里:\(1\leq a_i<b_i\leq 1000000\),说不定有\(O(max(b_i))\)的写法呢?然后老老实实翻了题解。。。
所以我们考虑差分。
进来一个左端点就在相应位置+1,进来一个右端点就在相应位置-1,对,这就是典型的差分。
当我们的点的左边为正,而当前点为0,这说明有若干(也可能只有一)对区间从这里开始。
同理,当我们的点的右边为0,而当前点为0,这说明有若干(也可能只有一)对区间在这里完成了匹配,可以断开作为一段完整区间。
然后注意一下形同\([i,i]\)的区间要特判一下就可以了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
#define Min(a,b) ((a<b)?a:b)
#define Max(a,b) ((a>b)?a:b)
const int N=101000,M=1010000;
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
return x*f;}
struct NODE{int d,u;}nd[N];
bool cmp(NODE a,NODE b) {return a.d<b.d;}
struct ITV{int l,r;}ans[N];
int n,itv[M],L=M,R=0;
int main(){
int i,j;
n=read();int cnt=0;
for (i=1;i<=n;++i){
nd[++cnt].d=read();nd[cnt].u=1;L=Min(L,nd[cnt].d);R=Max(R,nd[cnt].d);
nd[++cnt].d=read();nd[cnt].u=-1;L=Min(L,nd[cnt].d);R=Max(R,nd[cnt].d);}
memset(itv,0,sizeof(itv));
sort(nd+1,nd+1+cnt,cmp);
int p=1;cnt=0;
for (i=L;i<=R;++i){
itv[i]=itv[i-1];int flg=0,rec=0;
while ((nd[p].d==i)&&(p<=2*n)) {flg=1;rec+=nd[p].u;itv[i]+=nd[p].u;p++;}
if ((!itv[i-1])&&(flg)&&(!rec)) {ans[++cnt].l=i;ans[cnt].r=i;}//对于[i,i]型区间的特判
if ((!(itv[i-1]))&&(itv[i])) ans[++cnt].l=i;
else if ((itv[i-1])&&(!(itv[i]))) ans[cnt].r=i;
}
for (i=1;i<=cnt;++i) printf("%d %d\n",ans[i].l,ans[i].r);
return 0;
}
Luogu_2434_[SDOI2005]区间的更多相关文章
- 洛谷——P2434 [SDOI2005]区间
P2434 [SDOI2005]区间 题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间 ...
- 洛谷P2434 [SDOI2005]区间
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- P2434 [SDOI2005]区间
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- [SDOI2005]区间
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- 【洛谷】P2434 [SDOI2005]区间(暴力)
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- luogu P2434 [SDOI2005]区间
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- 「LuoguP2434」 [SDOI2005]区间(贪心
Description 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照 ...
- 洛谷 2434 [SDOI2005]区间
[题解] 鲜活的大水题... 把区间排个序然后瞎搞就可以了,发现现在区间的左端点比之前区间的最大的右端点还大,那就增加一个答案区间.每次更新目前最大右区间. #include<cstdio> ...
- 题解 洛谷P2434 【[SDOI2005]区间】
本题的贪心策略是以区间起点位置由小到大排序,然后开始合并. 区间按起点顺序由小到大排序,可以最大化合并成功的可能. 这个脑补应该不难想出来.(读者自证不难 直接上代码: #include <bi ...
随机推荐
- English Grammar - Subject Clause
that引导主语从句 一般置于句末,偶尔也置于句首 that引导的主语从句置于句首 That the seas are being overfished has been known for year ...
- WIFI无线协议802.11a/b/g/n/ac的演变以及区别
摘自:https://blog.csdn.net/Brouce__Lee/article/details/80956945 毫无疑问,WiFi的出现普及带给我们巨大的上网便利,所以了解一下WiFi对应 ...
- drf三大认证:认证组件-权限组件-权限六表-自定义认证组件的使用
三大认证工作原理简介 认证.权限.频率 源码分析: from rest_framework.views import APIView 源码分析入口: 内部的三大认证方法封装: 三大组件的原理分析: 权 ...
- 配对t检验
- amazon中文文档
在线调试器 https://mws.amazonservices.com.cn/scratchpad/index.html mws 中心 https://developer.amazonservice ...
- 5 分钟全面掌握 Python 装饰器
♚ 作者:吉星高照, 网易游戏资深开发工程师,主要工作方向为网易游戏 CDN 自动化平台的设计和开发,脑洞比较奇特,喜欢在各种非主流的领域研究制作各种不走寻常路的东西. ! Python的装饰器是面试 ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- c语言中getchar的用法
/************************************************************************* > File Name: getchar2. ...
- 可用的 .net core 支持 RSA 私钥加密工具类
首先说明 MS并不建议私钥加密,而且.net 于安全的考虑,RSACryptoServiceProvider类解密时只有同时拥有公钥和私钥才可以,原因是公钥是公开的,会被多人持有,这样的数据传输是不安 ...
- AtCoder Grand Contest 033
为什么ABC那么多?建议Atcoder多出些ARC/AGC,好不容易才轮到AGC…… A 签到.就是以黑点为源点做多元最短路,由于边长是1直接bfs就好了,求最长路径. #include<bit ...