从头学pytorch(十三):使用GPU做计算
GPU计算
默认情况下,pytorch将数据保存在内存,而不是显存.
查看显卡信息
nvidia-smi
我的机器输出如下:
Fri Jan 3 16:20:51 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 105... Off | 00000000:01:00.0 Off | N/A |
| N/A 42C P0 N/A / N/A | 1670MiB / 4042MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1572 G /usr/lib/xorg/Xorg 601MiB |
| 0 4508 G compiz 231MiB |
| 0 4935 G ...equest-channel-token=592189694510481540 486MiB |
| 0 5574 G ...quest-channel-token=4527142888685015556 328MiB |
| 0 10049 G ...passed-by-fd --v8-snapshot-passed-by-fd 21MiB |
+-----------------------------------------------------------------------------+
单卡,gtx 1050,4g显存.
查看gpu是否可用
torch.cuda.is_available()
查看gpu数量
torch.cuda.device_count()
查看当前gpu号
torch.cuda.current_device()
查看设备名
torch.cuda.get_device_name(device_id)
把tensor复制到显存
使用.cuda()可以将CPU上的Tensor转换(复制)到GPU上。如果有多块GPU,我们用.cuda(i)来表示第 \(i\) 块GPU及相应的显存(\(i\)从0开始)且cuda(0)和cuda()等价。
x=x.cuda()
直接在显存上存储数据
device = torch.device('cuda')
x = torch.tensor([1, 2, 3], device=device)
或者
x = torch.tensor([1,2,3]).to(device)
如果对在GPU上的数据进行运算,那么结果还是存放在GPU上。
y = x**2
y
输出:
tensor([1, 4, 9], device='cuda:0')
需要注意的是,存储在不同位置中的数据是不可以直接进行计算的。即存放在CPU上的数据不可以直接与存放在GPU上的数据进行运算,位于不同GPU上的数据也是不能直接进行计算的。
z = y + x.cpu()
会报错:
z=y+x.cpu()
RuntimeError: expected device cuda:0 and dtype Long but got device cpu and dtype Long
完整代码
import torch
from torch import nn
is_gpu = torch.cuda.is_available()
gpu_nums = torch.cuda.device_count()
gpu_index = torch.cuda.current_device()
print(is_gpu,gpu_nums,gpu_index)
device_name = torch.cuda.get_device_name(gpu_index)
print(device_name)
x=torch.Tensor([1,2,3])
print(x)
x=x.cuda(gpu_index)
print(x)
print(x.device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.tensor([1, 2, 3], device=device)
x = torch.tensor([1,2,3]).to(device)
print(x)
y=x**2
print(y)
#z=y+x.cpu()
模型的gpu计算
同Tensor类似,PyTorch模型也可以通过.cuda转换到GPU上。我们可以通过检查模型的参数的device属性来查看存放模型的设备。
检查模型参数存放设备:
net = nn.Linear(3,1)
print(type(net.parameters()))
print(list(net.parameters())[0].device)
输出
<class 'generator'>
cpu
在gpu上做运算.通过.cuda()将模型计算放到gpu.相应的,传给模型的输入也必须是gpu显存上的数据.
net = nn.Linear(3,1)
print(type(net.parameters()))
print(list(net.parameters())[0].device)
net=net.cuda()
x=torch.tensor([1,2,3]).cuda()
net(x)
总结:
- PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。在默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。
- PyTorch要求计算的所有输入数据都在内存或同一块显卡的显存上。
从头学pytorch(十三):使用GPU做计算的更多相关文章
- 从头学pytorch(一):数据操作
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3 ...
- 从头学pytorch(十五):AlexNet
AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...
- 从头学pytorch(三) 线性回归
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据 ...
- 从头学pytorch(二) 自动求梯度
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...
- 从头学pytorch(六):权重衰减
深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模 ...
- 从头学pytorch(十二):模型保存和加载
模型读取和存储 总结下来,就是几个函数 torch.load()/torch.save() 通过python的pickle完成序列化与反序列化.完成内存<-->磁盘转换. Module.s ...
- 从头学pytorch(十四):lenet
卷积神经网络 在之前的文章里,对28 X 28的图像,我们是通过把它展开为长度为784的一维向量,然后送进全连接层,训练出一个分类模型.这样做主要有两个问题 图像在同一列邻近的像素在这个向量中可能相距 ...
- 从头学pytorch(十九):批量归一化batch normalization
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...
- 从头学pytorch(二十):残差网络resnet
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...
随机推荐
- 二、【Docker笔记】Docker的核心概念及安装
Docker主要有三大核心的概念,分别为镜像(Image).容器(Container)及仓库(Repository). 一.核心概念 1.Docker镜像 Docker镜像其实与虚拟机镜像很类似, ...
- spring5之容器始末源码赏析 (一)总览
首先,本系列并不是以介绍spring5 的新特性为主,之所以以spring5为标题,是因为即将赏析的源码来自最新的spring版本.虽说是spring最新版本,但是容器的整个生命周期与之前版本相比,并 ...
- 2020.4.4号全国疫情哀悼日网页变灰色前端是如何实现的?-pink老师
今天是4.4疫情哀悼日,纪念疫情期间牺牲的烈士和逝世同胞,因此大部分网站颜色都变灰色了,我们前端是如何实现的呢? 核心原理,使用css3的滤镜效果即可,filter grayscale 将整个界面变为 ...
- LayUI制作日历工作记录簿
标题不知道该如何取,大概就是用Lay UI的Table,制作一个日历,在日历上可以添加每天的工作简记录.记录下LayUI Table的一些用法,一些值得探索的地方在于日历生成后,给周末加背景色,当天加 ...
- 汇编学习-三(VB)
闲来无事做了一下160个crackme,因为是VB程序,所以将得到的一点心得记录如下(OD加载注释) push eax ; Andréna.004018A8 call dword ptr ds:[&l ...
- 探秘 RocketMQ 消息持久化机制
我们知道 RocketMQ 是一款高性能.高可靠的分布式消息中间件,高性能和高可靠是很难兼得的.因为要保证高可靠,那么数据就必须持久化到磁盘上,将数据持久化到磁盘,那么可能就不能保证高性能了. Roc ...
- 单周期CPU
一个时钟周期执行一条指令的过程理解(单周期CPU): https://blog.csdn.net/a201577F0546/article/details/84726912 单周期CPU指的是一条指令 ...
- 如何关闭Springboot应用服务
背景 以往的单机应用会采用kill方式关闭应用服务,但是这种关闭应用的方式在springboot中会让当前应用将所有处理中的请求丢弃,返回失败响应.我们在处理重要业务逻辑要极力避免的这种响应失败在,所 ...
- 【php】面向对象(三)
知识点关键词:FSCICATS一. f => final: a) 是一个修饰符,用来修饰类和成员方法 b) 使用final修饰符修饰的类不能被继承,使用final修饰符修饰的成员方法,不能被重写 ...
- 在.net core中完美解决多租户分库分表的问题
前几天有人想做一个多租户的平台,每个租户一个库,可以进行水平扩展,应用端根据登录信息,切换到不同的租户库 计划用ef core实现,他们说做不出来,需要动态创建dbContext,不好实现 然而这个使 ...