从头学pytorch(十三):使用GPU做计算
GPU计算
默认情况下,pytorch将数据保存在内存,而不是显存.
查看显卡信息
nvidia-smi
我的机器输出如下:
Fri Jan 3 16:20:51 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 105... Off | 00000000:01:00.0 Off | N/A |
| N/A 42C P0 N/A / N/A | 1670MiB / 4042MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1572 G /usr/lib/xorg/Xorg 601MiB |
| 0 4508 G compiz 231MiB |
| 0 4935 G ...equest-channel-token=592189694510481540 486MiB |
| 0 5574 G ...quest-channel-token=4527142888685015556 328MiB |
| 0 10049 G ...passed-by-fd --v8-snapshot-passed-by-fd 21MiB |
+-----------------------------------------------------------------------------+
单卡,gtx 1050,4g显存.
查看gpu是否可用
torch.cuda.is_available()
查看gpu数量
torch.cuda.device_count()
查看当前gpu号
torch.cuda.current_device()
查看设备名
torch.cuda.get_device_name(device_id)
把tensor复制到显存
使用.cuda()
可以将CPU上的Tensor
转换(复制)到GPU上。如果有多块GPU,我们用.cuda(i)
来表示第 \(i\) 块GPU及相应的显存(\(i\)从0开始)且cuda(0)
和cuda()
等价。
x=x.cuda()
直接在显存上存储数据
device = torch.device('cuda')
x = torch.tensor([1, 2, 3], device=device)
或者
x = torch.tensor([1,2,3]).to(device)
如果对在GPU上的数据进行运算,那么结果还是存放在GPU上。
y = x**2
y
输出:
tensor([1, 4, 9], device='cuda:0')
需要注意的是,存储在不同位置中的数据是不可以直接进行计算的。即存放在CPU上的数据不可以直接与存放在GPU上的数据进行运算,位于不同GPU上的数据也是不能直接进行计算的。
z = y + x.cpu()
会报错:
z=y+x.cpu()
RuntimeError: expected device cuda:0 and dtype Long but got device cpu and dtype Long
完整代码
import torch
from torch import nn
is_gpu = torch.cuda.is_available()
gpu_nums = torch.cuda.device_count()
gpu_index = torch.cuda.current_device()
print(is_gpu,gpu_nums,gpu_index)
device_name = torch.cuda.get_device_name(gpu_index)
print(device_name)
x=torch.Tensor([1,2,3])
print(x)
x=x.cuda(gpu_index)
print(x)
print(x.device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.tensor([1, 2, 3], device=device)
x = torch.tensor([1,2,3]).to(device)
print(x)
y=x**2
print(y)
#z=y+x.cpu()
模型的gpu计算
同Tensor
类似,PyTorch模型也可以通过.cuda
转换到GPU上。我们可以通过检查模型的参数的device
属性来查看存放模型的设备。
检查模型参数存放设备:
net = nn.Linear(3,1)
print(type(net.parameters()))
print(list(net.parameters())[0].device)
输出
<class 'generator'>
cpu
在gpu上做运算.通过.cuda()将模型计算放到gpu.相应的,传给模型的输入也必须是gpu显存上的数据.
net = nn.Linear(3,1)
print(type(net.parameters()))
print(list(net.parameters())[0].device)
net=net.cuda()
x=torch.tensor([1,2,3]).cuda()
net(x)
总结:
- PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。在默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。
- PyTorch要求计算的所有输入数据都在内存或同一块显卡的显存上。
从头学pytorch(十三):使用GPU做计算的更多相关文章
- 从头学pytorch(一):数据操作
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3 ...
- 从头学pytorch(十五):AlexNet
AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...
- 从头学pytorch(三) 线性回归
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据 ...
- 从头学pytorch(二) 自动求梯度
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...
- 从头学pytorch(六):权重衰减
深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模 ...
- 从头学pytorch(十二):模型保存和加载
模型读取和存储 总结下来,就是几个函数 torch.load()/torch.save() 通过python的pickle完成序列化与反序列化.完成内存<-->磁盘转换. Module.s ...
- 从头学pytorch(十四):lenet
卷积神经网络 在之前的文章里,对28 X 28的图像,我们是通过把它展开为长度为784的一维向量,然后送进全连接层,训练出一个分类模型.这样做主要有两个问题 图像在同一列邻近的像素在这个向量中可能相距 ...
- 从头学pytorch(十九):批量归一化batch normalization
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...
- 从头学pytorch(二十):残差网络resnet
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...
随机推荐
- Mac 中命令行启动、停止、重启Mysql
启动: ~$ sudo /usr/local/mysql/support-files/mysql.server start 停止: ~$ sudo /usr/local/mysql/support-f ...
- java.lang.NoSuchMethodException: java.util.List.<init>()
报错信息如下 java.lang.NoSuchMethodException: java.util.List.<init>() at java.lang.Class.getConstruc ...
- java Jsoup.clean 处理入参时,会将换行符解析成空字符串问题
Json 中clean方法有两个: 一:会格式化入参,将换行符替换成空格 clean(String bodyHtml, String baseUri, Whitelist whitelist) 二:n ...
- 【WPF学习】第六十五章 创建无外观控件
用户控件的目标是提供增补控件模板的设计表面,提供一种定义控件的快速方法,代价是失去了将来的灵活性.如果喜欢用户控件的功能,但需要修改使其可视化外观,使用这种方法就有问题了.例如,设想希望使用相同的颜色 ...
- C、Guard the empire(贪心)
链接:https://ac.nowcoder.com/acm/contest/3570/C 来源:牛客网 题目描述 Hbb is a general and respected by the enti ...
- 监听窗口大小变化,改变画面大小-[Three.js]-[onResize]
如果没有监听窗口变化,将会出现一下情况: ![](https://img2018.cnblogs.com/blog/1735896/202001/1735896-20200102081845027-2 ...
- 软件——Hexo-NexT配置个人博客
一.安装NexT Hexo 安装主题的方式非常简单,只需要将主题文件拷贝至站点目录的 themes 目录下, 然后修改下配置文件即可.具体到 NexT 来说,安装步骤如下. 1.克隆最新版本 在终端窗 ...
- Google GMS介绍
Google GMS介绍GMS全称为GoogleMobile Service.GMS目前提供有Search.Search by Voice.Gmail.Contact Sync.Calendar Sy ...
- Struts2-学习笔记系列(5)-配置action
配置包命名空间 实现了action就需要在struts中配置action.首先配置包属性: 需要注意的是:在框架进行包匹配的时候,按文档的从上到下的顺序进行匹配 <!--下面配置名为book ...
- 邮件退信“Remote Server returned '420 4.2.0 Recipient deferred because there is no Mdb'”
标题是一个近期遇到的NDR 对于Exchange运维工作者,NDR通常给了我们较为清晰的排错方向,我们先看一下退信的原因, 我的一台MailBox报错“远程服务器返回‘420 4.2.0’接受延迟,因 ...