第三周学习内容

庖丁解牛Linux内核分析第二章:操作系统是如何工作的

Linux内核分析实验二

学到的一些知识

  • 计算机的三大法宝:存储程序计算机,函数调用堆栈,中断

  • 堆栈是C语言程序运行时必须使用的记录函数调用路径和参数存储的空间,堆栈具体的作用有:记录函数调用框架,传递函数参数,保存返回值的地址,提供函数内部局部变量的存储空间等

  • 与堆栈相关的寄存器:ESP,EBP

  • 堆栈操作:push,pop

  • CS:EIP总是指向下一条的指令地址

    • 顺序执行:总是指向地址连续的下一条指令
    • 跳转/分支:执行这样的指令时,CS:EIP的值会根据程序需要被修改
    • call:将当前的CS:EIP的值压入栈顶,CS:EIP指向被调用函数的入口地址
    • ret:从栈顶弹出原来保存在这里的CS:EIP的值,放入CS:EIP中
  • 如果两个机器的处理器指令集不同,汇编出来的汇编代码也会有所不同

实验内容

1.虚拟一个x86的CPU硬件平台

在实验楼的环境中打开shell,输入两行代码即可启动内核:

$ cd ~/LinuxKernel/linux-3.9.4
$ qemu -kernel arch/x86/boot/bzImage

内核启动后如图:

进入mykernel查看mymain.c和myinterrupt.c,如图所示:



2.在mykernel基础上构造一个简单地操作系统内核

增加一个mypcb.h的头文件

#define MAX_TASK_NUM 10 // 最大进程数
#define KERNEL_STACK_SIZE 1024*8
#define PRIORITY_MAX 30 //从0到30的优先级 /* CPU-specific state of this task */
struct Thread {
unsigned long ip;//point to cpu run address
unsigned long sp;//point to the thread stack's top address
//todo add other attrubte of system thread
};
//PCB Struct
typedef struct PCB{
int pid; // pcb id
volatile long state; /* -1 不运行, 0 运行, >0 停止 */
char stack[KERNEL_STACK_SIZE];// each pcb stack size is 1024*8
/* CPU-specific state of this task */
struct Thread thread;
unsigned long task_entry;//the task execute entry memory address
struct PCB *next;//pcb is a circular linked list
unsigned long priority;// task priority ////////
//todo add other attrubte of process control block
}tPCB; //void my_schedule(int pid);
void my_schedule(void);

修改mymain.c

#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/smp.h>
#endif
#include "mypcb.h" tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0; void my_process(void);
unsigned long get_rand(int ); void sand_priority(void)
{
int i;
for(i=0;i<MAX_TASK_NUM;i++)
task[i].priority=get_rand(PRIORITY_MAX);
}
void __init my_start_kernel(void)
{
int pid = 0;
/* Initialize process 0*/
task[pid].pid = pid;
task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
// set task 0 execute entry address to my_process
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid];
/*fork more process */
for(pid=1;pid<MAX_TASK_NUM;pid++)
{
memcpy(&task[pid],&task[0],sizeof(tPCB));
task[pid].pid = pid;
task[pid].state = -1;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].priority=get_rand(PRIORITY_MAX);//each time all tasks get a random priority
}
task[MAX_TASK_NUM-1].next=&task[0];
printk(KERN_NOTICE "\n\n\n\n\n\nsystem begin :>>>process 0 running!!!<<<\n\n");
/* start process 0 by task[0] */
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */
"pushl %1\n\t" /* push ebp */
"pushl %0\n\t" /* push task[pid].thread.ip */
"ret\n\t" /* pop task[pid].thread.ip to eip */
"popl %%ebp\n\t"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = 0;
while(1)
{
i++;
if(i%10000000 == 0)
{ if(my_need_sched == 1)
{
my_need_sched = 0;
sand_priority();
my_schedule(); }
}
}
}//end of my_process //produce a random priority to a task
unsigned long get_rand(max)
{
unsigned long a;
unsigned long umax;
umax=(unsigned long)max;
get_random_bytes(&a, sizeof(unsigned long ));
a=(a+umax)%umax;
return a;
}

修改myinterrupt.c

#include "mypcb.h"

#define CREATE_TRACE_POINTS
#include <trace/events/timer.h> extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0; /*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
// make sure need schedule after system circle 2000 times.
if(time_count%2000 == 0 && my_need_sched != 1)
{
my_need_sched = 1;
//time_count=0;
}
time_count ++ ;
#endif
return;
} void all_task_print(void); tPCB * get_next(void)
{
int pid,i;
tPCB * point=NULL;
tPCB * hig_pri=NULL;//points to the the hightest task
all_task_print();
hig_pri=my_current_task;
for(i=0;i<MAX_TASK_NUM;i++)
if(task[i].priority<hig_pri->priority)
hig_pri=&task[i];
printk("higst process is:%d priority is:%d\n",hig_pri->pid,hig_pri->priority);
return hig_pri; }//end of priority_schedule void my_schedule(void)
{
tPCB * next;
tPCB * prev;
// if there no task running or only a task ,it shouldn't need schedule
if(my_current_task == NULL
|| my_current_task->next == NULL)
{
printk(KERN_NOTICE "time out!!!,but no more than 2 task,need not schedule\n");
return;
}
/* schedule */ next = get_next();
prev = my_current_task;
printk(KERN_NOTICE "the next task is %d priority is %u\n",next->pid,next->priority);
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{//save current scene
/* switch to next process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
"1:\t" /* next process start here */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;//switch to the next task
printk(KERN_NOTICE "switch from %d process to %d process\n>>>process %d running!!!<<<\n\n",prev->pid,next->pid,next->pid); }
else
{
next->state = 0;
my_current_task = next;
printk(KERN_NOTICE "switch from %d process to %d process\n>>>process %d running!!!<<<\n\n\n",prev->pid,next->pid,next->pid); /* switch to new process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl %2,%%ebp\n\t" /* restore ebp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}//end of my_schedule void all_task_print(void)
{
int i,cnum=62;//
printk(KERN_NOTICE "\ncurrent task is:%d all task in OS are:\n",my_current_task->pid); printk("");
for(i=0;i<cnum;i++)
printk("-");
printk("\n| process:");
for(i=0;i< MAX_TASK_NUM;i++)
printk("| %2d ",i);
printk("|\n| priority:");
for(i=0;i<MAX_TASK_NUM;i++)
printk("| %2d ",task[i].priority); printk("|\n");
for(i=0;i<cnum;i++)
printk("-");
printk("\n");
}

重新编译,输入以下代码:

$ cd ~/LinuxKernel/linux-3.9.4
$ make
$ qemu -kernel arch/x86/boot/bzImage

结果如图所示

2019-2020-1 20199326《Linux内核原理与分析》第三周作业的更多相关文章

  1. 2019-2020-1 20199329《Linux内核原理与分析》第九周作业

    <Linux内核原理与分析>第九周作业 一.本周内容概述: 阐释linux操作系统的整体构架 理解linux系统的一般执行过程和进程调度的时机 理解linux系统的中断和进程上下文切换 二 ...

  2. 2019-2020-1 20199329《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 一.上周问题总结: 未能及时整理笔记 Linux还需要多用 markdown格式不熟练 发布博客时间超过规定期限 二.本周学习内容: <庖丁解 ...

  3. 20169212《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 这一周学习了MOOCLinux内核分析的第一讲,计算机是如何工作的?由于本科对相关知识的不熟悉,所以感觉有的知识理解起来了有一定的难度,不过多查查资 ...

  4. 20169210《Linux内核原理与分析》第二周作业

    <Linux内核原理与分析>第二周作业 本周作业分为两部分:第一部分为观看学习视频并完成实验楼实验一:第二部分为看<Linux内核设计与实现>1.2.18章并安装配置内核. 第 ...

  5. 2018-2019-1 20189221 《Linux内核原理与分析》第九周作业

    2018-2019-1 20189221 <Linux内核原理与分析>第九周作业 实验八 理理解进程调度时机跟踪分析进程调度与进程切换的过程 进程调度 进度调度时机: 1.中断处理过程(包 ...

  6. 2017-2018-1 20179215《Linux内核原理与分析》第二周作业

    20179215<Linux内核原理与分析>第二周作业 这一周主要了解了计算机是如何工作的,包括现在存储程序计算机的工作模型.X86汇编指令包括几种内存地址的寻址方式和push.pop.c ...

  7. 2019-2020-1 20209313《Linux内核原理与分析》第二周作业

    2019-2020-1 20209313<Linux内核原理与分析>第二周作业 零.总结 阐明自己对"计算机是如何工作的"理解. 一.myod 步骤 复习c文件处理内容 ...

  8. 2018-2019-1 20189221《Linux内核原理与分析》第一周作业

    Linux内核原理与分析 - 第一周作业 实验1 Linux系统简介 Linux历史 1991 年 10 月,Linus Torvalds想在自己的电脑上运行UNIX,可是 UNIX 的商业版本非常昂 ...

  9. 《Linux内核原理与分析》第一周作业 20189210

    实验一 Linux系统简介 这一节主要学习了Linux的历史,Linux有关的重要人物以及学习Linux的方法,Linux和Windows的区别.其中学到了LInux中的应用程序大都为开源自由的软件, ...

  10. 2018-2019-1 20189221《Linux内核原理与分析》第二周作业

    读书报告 <庖丁解牛Linux内核分析> 第 1 章 计算工作原理 1.1 存储程序计算机工作模型 1.2 x86-32汇编基础 1.3汇编一个简单的C语言程序并分析其汇编指令执行过程 因 ...

随机推荐

  1. Linux(Ubuntu)与windows实现文件共享

    步骤:1.从网上下载VMware和Ubuntu的镜像文件 2.在虚拟机上安装Ubuntu系统 3.在安装好的系统中安装VMware tools 实现文件共享    4.在VMware中设置与windo ...

  2. 从JDK源码学习Arraylist

    从今天开始从源码去学习一些Java的常用数据结构,打好基础:) Arraylist源码阅读: jdk版本:1.8.0 首先看其构造方法: 构造方法一: 第一种支持初始化容量大小,其中声明一个对象数组, ...

  3. CF1292C Xenon's Attack on the Gangs

    题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...

  4. 快速搜索多个word、excel等文件中内容

    背景:要在多个文件甚至文件夹中找到文件中包含的某些内容 以win10举例: 1.打开一个文件夹 2.打开文件夹选项 3.配置搜索 4.搜索文件

  5. Hadoop(学习&#183;2)

                                                                          Hadoop 操作步骤: 192.168.1.110-113 ...

  6. 项目踩坑实记 :2019年(SSM 架构)

    1.Bootstarp 相关 JS 结合 Bootstarp 初始化表格后,如果是 Ajax 请求获得返回数据,重新渲染数据到表格的话,用下面的函数. ChanInfTable 是表格的 id. 2. ...

  7. wireshark抓包实战(五),首选项设置和基本的抓包设置

    一.首选项 首选项一般是修改软件底层的一些默认参数 选中编辑,点击首选项按钮 二.抓包选项设置 点击捕获,选中选项 1.捕获网卡设置 2.保存文件方式设置 很多情况下wireshark会保存很大的数据 ...

  8. javascript入门 之 用bootstrap-table写一个表格

    方法1(对普通的 table 设置 data-toggle="table" 即可): <!DOCTYPE html> <html> <head> ...

  9. c++用递归法将一个整数n转换成字符串

    任务描述 用递归法将一个整数n转换成字符串.例如,输入483,应输出字符串“483”.n的位数不确定,可以是任意位数的整数. 测试输入: 预期输出: 程序源码: #include <stdio. ...

  10. MySQL学习之路3-MySQL中常用数据类型

    MySQL中常用数据类型 字符型 存储字符型数据.例如姓名,地址,电话号码等.使用引号括起来,一般使用单引号. 常用类型: char(255) 定长字符串,最大长度255个字符. varchar(25 ...