beta函数与置信度估计
可信度的估计
- 二项分布中的\(p\) 服从Beta分布 $ {\rm beta}(\alpha, \beta)$, 密度函数 \(\frac1{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta -1}\)
- 均值 \(\frac \alpha {\alpha + \beta}\)
- 方差 \(\frac {\alpha \beta} {(\alpha+\beta)^2 (\alpha+ \beta + 1) } \)
from scipy.stats import beta
def confidence(n_bad, n_good, tol=2):
''' 返回估计的坏率p, 以及在tol倍标准差下的可信度'''
a, b = n_bad+1, n_good+1
p = a / (a+b)
v = beta.std(a, b)
up, low = min(1, p + v*tol), max(0, p - v*tol)
d = beta.cdf(up, a,b) - beta.cdf(low, a,b)
return p, v, d
test_set = [
(500, 20000, 2),
(1000, 200000, 2),
(2000, 200000, 2),
(5000, 200000, 2),
(500, 100000, 2),
(1000, 100000, 2),
(2000, 100000, 2),
(5000, 100000, 2),
(2000, 10000, 2),
]
print(" bad; total; 均值p; 标准差v; 均值的相对误差e; 置信度")
for (n_bad, n_good, tol) in test_set:
p,v,d = confidence(n_bad, n_good, tol)
ss = ('{:5d};{:7d}; p={p:0.4f}; v={v:0.6f}; e={e:0.3f}; '
+ '均值在[p - {t}v, p + {t}v]的概率 {d:2.2f}%'
).format(n_bad, n_bad+n_good, p=p,v=v, c=v/p, d =d*100,t=tol, e=tol*v/p)
print(ss)
bad; total; 均值p; 标准差v; 均值的相对误差e; 置信度
500; 20500; p=0.0244; v=0.001078; e=0.088; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 201000; p=0.0050; v=0.000157; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 202000; p=0.0099; v=0.000220; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 205000; p=0.0244; v=0.000341; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
500; 100500; p=0.0050; v=0.000222; e=0.089; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 101000; p=0.0099; v=0.000312; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 102000; p=0.0196; v=0.000434; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 105000; p=0.0476; v=0.000657; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
2000; 12000; p=0.1667; v=0.003402; e=0.041; 均值在[p - 2v, p + 2v]的概率 95.45%
结论: 坏样本大于2000以上, 在95%置信度下, 坏率的相对误差<5%
beta函数与置信度估计的更多相关文章
- 两个Beta函数类型的积分及其一般形式
\[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...
- beta函数分布图
set.seed(1) x<-seq(-5,5,length.out=10000) a = c(.5,0.6, 0.7, 0.8, 0.9) b = c(.5, 1, 1, 2, 5) colo ...
- [再寄小读者之数学篇](2014-06-20 Beta 函数)
令 $\dps{B(m,n)=\sum_{k=0}^n C_n^k \cfrac{(-1)^k}{m+k+1}}$, $m,n\in\bbN^+$. (1) 证明 $B(m,n)=B(n,m)$; ( ...
- Matlab常用函数集锦
ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素 ...
- MATLAB相关快捷键以及常用函数
MATLAB快捷键大全 F1帮助 F2改名F3搜索 F4地址 F5刷新 F6切换 F10菜单 CTRL+A全选 CTRL+C复制 CTRL+X剪切 CTRL+V粘贴 CTRL+Z撤消 CTRL+O打开 ...
- (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3. 4. ...
- 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布
接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...
- Beta分布和Dirichlet分布
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...
- LDA-math-神奇的Gamma函数
http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...
随机推荐
- spring-@ResponseBody返回时的编码处理
下面是一个解决方案 @RequestMapping(value = "/queryall", method = GET, produces = "application/ ...
- 148-PHP strip_tags函数,剥去字符串中的 HTML 标签(二)
<?php //定义一段包含PHP代码的字符串 $php=<<<PHP 这里是PHP代码的开始 <?php echo "hello!"; PHP; $ ...
- flink笔记(三) flink架构及运行方式
架构图 Job Managers, Task Managers, Clients JobManager(Master) 用于协调分布式执行.它们用来调度task,协调检查点,协调失败时恢复等. Fli ...
- abstract和interface关键字介绍
一.abstract关键字介绍 abstract可以修饰方法.类.使用abstract修饰的方法和类分别叫做抽象方法和抽象类. 1.抽象方法 抽象方法的定义:指可以通过abstract关键字声明的方法 ...
- Python MySQL 创建数据库
章节 Python MySQL 入门 Python MySQL 创建数据库 Python MySQL 创建表 Python MySQL 插入表 Python MySQL Select Python M ...
- 苏州大学ICPC集训队新生赛第二场
A - Score UVA - 1585 水 #include<bits/stdc++.h> using namespace std; int main(){ int n; cin> ...
- sed -i添加到第一行
用sed的i\命令在第一行前面插入即可,加上 -i 选项直接操作文件. sed -i '1i\要添加的内容' yourfile 查看插入第一行是否成功 sed -n '1,1p' yourfile
- Jetson TX2 安装JetPack3.3教程
Jetson TX2 刷机教程(JetPack3.3版本) 参考网站:https://blog.csdn.net/long19960208/article/details/81538997 版权声明: ...
- DataStructuresAndAlogorithm--红黑树
简介 为了理解红黑树(red-black tree)是什么,首先需要知道二叉树. 定义1:二叉树是结点的有限集合,该集合或者为空集,或者是由一个根和两棵互不相交的,称为该根的左子树和右子树的二叉树组成 ...
- linux忘记密码
linux忘记密码 Linux进入救援模式的方法 视频 centos6.5测试通过 如下 1.开机按esc进入下面界面 2.按e 3.按e 4.DM后空格加上single再回车 5.会回到这里再按b ...