可信度的估计

  • 二项分布中的\(p\) 服从Beta分布 $ {\rm beta}(\alpha, \beta)$, 密度函数 \(\frac1{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta -1}\)
  • 均值 \(\frac \alpha {\alpha + \beta}\)
  • 方差 \(\frac {\alpha \beta} {(\alpha+\beta)^2 (\alpha+ \beta + 1) } ​\)

from scipy.stats import beta def confidence(n_bad, n_good, tol=2):
''' 返回估计的坏率p, 以及在tol倍标准差下的可信度'''
a, b = n_bad+1, n_good+1
p = a / (a+b)
v = beta.std(a, b)
up, low = min(1, p + v*tol), max(0, p - v*tol)
d = beta.cdf(up, a,b) - beta.cdf(low, a,b)
return p, v, d test_set = [
(500, 20000, 2),
(1000, 200000, 2),
(2000, 200000, 2),
(5000, 200000, 2),
(500, 100000, 2),
(1000, 100000, 2),
(2000, 100000, 2),
(5000, 100000, 2),
(2000, 10000, 2),
] print(" bad; total; 均值p; 标准差v; 均值的相对误差e; 置信度")
for (n_bad, n_good, tol) in test_set:
p,v,d = confidence(n_bad, n_good, tol) ss = ('{:5d};{:7d}; p={p:0.4f}; v={v:0.6f}; e={e:0.3f}; '
+ '均值在[p - {t}v, p + {t}v]的概率 {d:2.2f}%'
).format(n_bad, n_bad+n_good, p=p,v=v, c=v/p, d =d*100,t=tol, e=tol*v/p)
print(ss)
  bad;  total; 均值p;    标准差v;     均值的相对误差e;  置信度
500; 20500; p=0.0244; v=0.001078; e=0.088; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 201000; p=0.0050; v=0.000157; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 202000; p=0.0099; v=0.000220; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 205000; p=0.0244; v=0.000341; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
500; 100500; p=0.0050; v=0.000222; e=0.089; 均值在[p - 2v, p + 2v]的概率 95.46%
1000; 101000; p=0.0099; v=0.000312; e=0.063; 均值在[p - 2v, p + 2v]的概率 95.46%
2000; 102000; p=0.0196; v=0.000434; e=0.044; 均值在[p - 2v, p + 2v]的概率 95.45%
5000; 105000; p=0.0476; v=0.000657; e=0.028; 均值在[p - 2v, p + 2v]的概率 95.45%
2000; 12000; p=0.1667; v=0.003402; e=0.041; 均值在[p - 2v, p + 2v]的概率 95.45%

结论: 坏样本大于2000以上, 在95%置信度下, 坏率的相对误差<5%

beta函数与置信度估计的更多相关文章

  1. 两个Beta函数类型的积分及其一般形式

    \[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...

  2. beta函数分布图

    set.seed(1) x<-seq(-5,5,length.out=10000) a = c(.5,0.6, 0.7, 0.8, 0.9) b = c(.5, 1, 1, 2, 5) colo ...

  3. [再寄小读者之数学篇](2014-06-20 Beta 函数)

    令 $\dps{B(m,n)=\sum_{k=0}^n C_n^k \cfrac{(-1)^k}{m+k+1}}$, $m,n\in\bbN^+$. (1) 证明 $B(m,n)=B(n,m)$; ( ...

  4. Matlab常用函数集锦

    ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素 ...

  5. MATLAB相关快捷键以及常用函数

    MATLAB快捷键大全 F1帮助 F2改名F3搜索 F4地址 F5刷新 F6切换 F10菜单 CTRL+A全选 CTRL+C复制 CTRL+X剪切 CTRL+V粘贴 CTRL+Z撤消 CTRL+O打开 ...

  6. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  7. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  8. Beta分布和Dirichlet分布

    在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...

  9. LDA-math-神奇的Gamma函数

    http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...

随机推荐

  1. python基础(变量,字符串,列表,元组)

    #列表的操作list1 = ['wuqiang','lichang','changhao'] #列表的定义print(list1) #操作列表print(list1[-1]) #操作列表的最后一位li ...

  2. eclipse 项目启动不了问题

    有可能是因为dubugger 打多了,所有启动不起来 解决方案:window——show view ——other....——breakpoints去除所有断点

  3. JS给对象添加新字段

    //这是我的对象 var myInfo = { "name":"peng ya ping", "tel":"138888888&q ...

  4. Django配置日志

    在settings里配置 # 日志配置 LOGGING = { # 是python的版本 'version': 1, # 是否禁用 'disable_existing_loggers': False, ...

  5. Centos 7 x86_64 环境Python2.7升级Python3.7.4

    升级Python3.7.4 #安装补丁包yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel read ...

  6. 基础语法-判断结构if语句

    基础语法-判断结构if语句 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.单分支语句 /** * 判断结构if单分支语句 * @author 尹正杰 * */ public c ...

  7. Egret Engine 2D - 遮罩

      矩形遮罩 shp.mask = new egret.Rectangle(20,20,30,50);   注意如果rec发生变化,需要重要将rec赋值给shp.mask 删除遮罩的方法 sprite ...

  8. node —— 静态资源文件管理

    var http = require("http"); var url = require("url"); var fs = require("fs& ...

  9. 七、SAP中输出当前日期

    一.在Sap中输出当前日期的函数是sy-datum,代码如下: 二.输出效果如下

  10. 吴裕雄--天生自然TensorFlow2教程:张量排序

    import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a tf.sort(a, direction='DESCENDING') # 返回 ...