[hdu4599]期望DP
思路:容易知道G(x)=6x,H(x)=6F(x)。此题的关键是求出F(x)的通项,要求F(x)的通项,先建立递推式:F(x)=1/6 * (F(x-1)+1) + 5/6 * (F(x-1)+1+F(x)-1)。
红色部分的意思是:假设已经连续出现x-1个了,若再出现一个同样的,总共花费F(x-1)+1步到达了目标状态,这种情况的概率是1/6,若出现了一个不一样的,则总共花费F(x-1)+1+F(x)-1,黄色部分是当前的总花费,但由于没到达目标状态,而回到了只比初始状态少走一步的状态,所以应该总花费应该加上F(x)-1,而概率是 5/6。将F(x)化简得到F(x)=6*F(x-1)+1,进而得到F(x) = (6^x-1)/5, H(x) = 6 * F(x), G(x) = 6 * x。求出通项来后就是解模方程了,由于有除法,用除法取模公式或者求逆都行。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <queue> #include <cmath> #include <algorithm> using namespace std; int pow_mod( int a, int b, int md) { if (b == 0) return 1 % md; long long buf = pow_mod(a, b >> 1, md); buf = (buf * buf) % md; return buf * (b & 1? a : 1) % md; } int solve( int k, int n) { int buf = (pow_mod(6, n, k) + k - 1) % k; if (buf == 0) return (pow_mod(6, n, k * 2011) + k * 2011 - 1) % (k * 2011) / k; else return (pow_mod(6, n, k * 2011) + k - buf - 1) % (k * 2011) / k; } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); #endif // ONLINE_JUDGE int n; while (cin >> n, n) { cout << solve(30, n) << " " << solve(5, n) << endl; } return 0; } |
[hdu4599]期望DP的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
随机推荐
- 【考试总结】欢乐模拟赛_Day1
\(T1\) 题目描述 给出一个 \(n × n\) 的, 元素为自然数的矩阵. 这个矩阵有许许多多个子矩阵, 定义它的所有子矩阵形成的集合为 \(S\) . 对于一个矩阵 \(k\) , 定义 \( ...
- JAVA快速排序代码实现
通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数.然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速 ...
- kubernetes的Statefulset介绍
StatefulSet是一种给Pod提供唯一标志的控制器,他可以保证部署和扩展的顺序. Pod一致性 包含次序(启动和停止次序).网络一致性.此一致性和Pod相关.与被调度到哪个Node节点无关. 稳 ...
- C#多线程(12):线程池
目录 线程池 ThreadPool 常用属性和方法 线程池说明和示例 线程池线程数 线程池线程数说明 不支持的线程池异步委托 任务取消功能 计时器 线程池 线程池全称为托管线程池,线程池受 .NET ...
- PE文件学习(2)导入表导出表
转自:evil.eagle https://blog.csdn.net/evileagle/article/details/12176797 导出表是用来描述模块中的导出函数的结构,如果一个模块导出了 ...
- thinkPHP--关于域名指向的问题
一般项目的域名指向都是可以直接配置的,在默认的情况下.一般都是指向index.php文件.我就直接上图吧,这里是用我的公司项目名称www.xcj.com为域名. 一般的进入项目,调用默认的控制器: h ...
- 如何给 Visual Studio 的输出程序添加版本信息
出处:https://stackoverflow.com/questions/284258/how-do-i-set-the-version-information-for-an-existing-e ...
- CSS躬行记(8)——裁剪和遮罩
一. 裁剪 裁剪(clipping)能让元素显示指定形状的区域,在布局时可起点缀的作用,丰富了视觉呈现.注意,裁剪本质上只是让元素的部分区域透明,由此可知,裁剪完后元素所占的空间仍旧会保留.裁剪最早是 ...
- 徐州赛区网络预赛 D Easy Math
比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...
- 【JAVA基础】10 Object类
1. Object类概述 是类层次结构的根类 每个类都使用 Object 作为超类 所有类都直接或者间接的继承自该类 所有对象(包括数组)都实现这个类的方法. 2. Object的构造方法 publi ...