思路:容易知道G(x)=6x,H(x)=6F(x)。此题的关键是求出F(x)的通项,要求F(x)的通项,先建立递推式:F(x)=1/6 * (F(x-1)+1) + 5/6 * (F(x-1)+1+F(x)-1)。

红色部分的意思是:假设已经连续出现x-1个了,若再出现一个同样的,总共花费F(x-1)+1步到达了目标状态,这种情况的概率是1/6,若出现了一个不一样的,则总共花费F(x-1)+1+F(x)-1,黄色部分是当前的总花费,但由于没到达目标状态,而回到了只比初始状态少走一步的状态,所以应该总花费应该加上F(x)-1,而概率是 5/6。将F(x)化简得到F(x)=6*F(x-1)+1,进而得到F(x) = (6^x-1)/5, H(x) = 6 * F(x), G(x) = 6 * x。求出通项来后就是解模方程了,由于有除法,用除法取模公式或者求逆都行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <algorithm>
using namespace std;
 
int pow_mod(int a, int b, int md) {
    if (b == 0) return 1 % md;
    long long buf = pow_mod(a, b >> 1, md);
    buf = (buf * buf) % md;
    return buf * (b & 1? a : 1) % md;
}
 
int solve(int k, int n) {
    int buf = (pow_mod(6, n, k) + k - 1) % k;
    if (buf == 0) return (pow_mod(6, n, k * 2011) + k * 2011 - 1) % (k * 2011) / k;
    else return (pow_mod(6, n, k * 2011) + k - buf - 1) % (k * 2011) / k;
}
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int n;
    while (cin >> n, n) {
        cout << solve(30, n) << " " << solve(5, n) << endl;
    }
    return 0;
}

[hdu4599]期望DP的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. Redis Linux安装+配置

    1.进入指定目录,下载资源(也可本地下载后复制到指定目录) wget http://download.redis.io/releases/redis-5.0.5.tar.gz 2.解压到指定目录 ta ...

  2. 用pip install不能成功安装时的处理方法

    解决办法: pip install pymysql -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

  3. Des对称可逆加密

    /// <summary> /// DES AES Blowfish ///  对称加密算法的优点是速度快, ///  缺点是密钥管理不方便,要求共享密钥. /// 可逆对称加密  密钥长 ...

  4. SQL Server 之T-SQL基本语句 (2)

    接下来继续用上述例子来总结知识点. 用通配符进行过滤 LIKE操作符 //用来选择与条件一样或部分相似的数据 select name from person where name like 'chen ...

  5. spring-boot-lll-starter自动化框架介绍

    1. spring-boot-lll-starter自动化框架介绍 1.1. 前言 舔着脸来介绍一波我刚写的自动化框架,spring-boot-lll-starter框架是经由我企业实战总结的一套,适 ...

  6. linux下文件的打包和压缩

    文章来源:linux下文件的打包和压缩 目录 一.文件压缩的原理 二.linux常见的压缩指令 三.常用实例 1.tar命令 2.zip命令 3.gz命令 4.bz2命令 5.xz命令(必须分两步) ...

  7. tp5--开发规范

    在日常开发的过程中,写代码都要有一定的规范,不然可读取就太差了,所以为了以后的维护.对接,好的代码规定是必须的. 以下是我自己对自己提出的要求: 全部: 1)  每个方法都要写好备注(@retrun作 ...

  8. mysql插入数字都变成2147483647的解决方法

    2147483647是int类型的最大值,所以插入11位的数字都会变成2147483647,把int改为bigint即可

  9. 取 token 并查看 container 信息

    curl -i -k \ -H "Content-Type: application/json" \ -d ' { "auth": { "identi ...

  10. MySQL 入门(1):查询和更新的内部实现

    摘要 在MySQL中,简单的CURD是很容易上手的. 但是,理解CURD的背后发生了什么,却是一件特别困难的事情. 在这一篇的内容中,我将简单介绍一下MySQL的架构是什么样的,分别有什么样的功能.然 ...