PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18345   Accepted: 8354

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs. 

All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 

More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across
the unlocked pig-houses. 

An unlimited number of pigs can be placed in every pig-house. 

Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 

The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 

The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 

A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Mirko工作在一个有M间猪房的农场里,但是他没有钥匙不能打开这些房间。有趣的是,顾客有要买哪些猪的房间的钥匙。购买的时候Mirko就可以打开相应的房间,然后也可以调整相应房间里猪的数量关系。问在一定顾客与购买关系的条件下,Mirko最多能卖多少猪。

这个构图求最大网络流的想法太赞,我真是远远想不到。

构造图,构造一个源点S和汇点t。

顾客是除了源点和汇点以外的节点,并且把每个猪房的第一个顾客与源点相连,权值为该猪房的起始猪的数量,假设第一个购买第N个猪房与第一个购买第M个猪房的人是一个人,则将其合并成一个点。

顾客I在顾客J之后购买相同猪房中的猪,则有一条边从顾客J指向顾客I,权值为无穷大,因为是要从那个边过来的网络流中取一部分。(这种构图方法谁想的,太厉害了。)

每一个顾客都与汇点连一条边,边的权值是每一个顾客希望购买的猪的数量。

这种构图方式最让我瞠目结舌的在于它居然就真的全照顾到了题目所要求的所有条件,一开始我觉得这些条件真多真繁琐啊,构图怎么可能直接求一个网络流就完事了呢,以为图论的问题都是像之前那么直接套模板了,结果这种构图方式,哇~

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; const int sum = 201;
const int INF = 99999999; int cap[sum][sum],flow[sum][sum],a[sum],p[sum];
int val[1005];
int flag[1005];
int N,M; void Edmonds_Karp()
{
int u,t,result=0;
queue <int> s;
while(s.size())s.pop(); while(1)
{
memset(a,0,sizeof(a));
memset(p,0,sizeof(p)); a[0]=INF;
s.push(0); while(s.size())
{
u=s.front();
s.pop(); for(t=0;t<=M+1;t++)
{
if(!a[t]&&flow[u][t]<cap[u][t])
{
s.push(t);
p[t]=u;
a[t]=min(a[u],cap[u][t]-flow[u][t]);//要和之前的那个点,逐一比较,到M时就是整个路径的最小残量
}
}
}
if(a[M+1]==0)
break;
result += a[M+1]; for(u=M+1;u!=0;u=p[u])
{
flow[p[u]][u] += a[M+1];
flow[u][p[u]] -= a[M+1];
}
}
cout<<result<<endl;
} int main()
{
int i,j,num,out,u,v,value;
while(scanf("%d%d",&N,&M)==2)
{
memset(cap,0,sizeof(cap));
memset(flow,0,sizeof(flow));
memset(flag,0,sizeof(flag)); for(i=1;i<=N;i++)
{
scanf("%d",&val[i]);
} for(i=1;i<=M;i++)
{
scanf("%d",&num);
for(j=1;j<=num;j++)
{
scanf("%d",&value);
if(!flag[value])
{
flag[value]=i;
cap[0][i] += val[value];
}
else
{
cap[flag[value]][i] = INF;
flag[value]=i;
}
}
scanf("%d",&out);
cap[i][M+1] += out;
}
Edmonds_Karp();
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1149:PIGS 网络流经典题的更多相关文章

  1. poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新

    题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...

  2. POJ 1149 PIGS ★(经典网络流构图)

    [题意] 有M个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依 次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每 个顾客分别都有他能够买的数量的上限.每个顾客走后, ...

  3. poj 3159(差分约束经典题)

    题目链接:http://poj.org/problem?id=3159思路:题目意思很简单,都与给定的条件dist[b]-dist[a]<=c,求dist[n]-dist[1]的最大值,显然这是 ...

  4. POJ 1149 PIGS(Dinic最大流)

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20738   Accepted: 9481 Description ...

  5. poj 1149 PIGS【最大流经典建图】

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18727   Accepted: 8508 Description ...

  6. 网络流(最大流):POJ 1149 PIGS

    PIGS Time Limit: 1000ms Memory Limit: 10000KB This problem will be judged on PKU. 64-bit integer(整数) ...

  7. [poj] 1149 PIGS || 最大流经典题目

    原题 题目大意 给你m个猪圈以及每个猪圈里原来有多少头猪,先后给你n个人,每个人能打开一些猪圈并且他们最多想买Ki头猪,在每一个人买完后能将打开的猪圈中的猪顺意分配在这次打开猪圈里,在下一个人来之前 ...

  8. POJ 1149 PIGS (AC这道题很不容易啊)网络流

    PIGS Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlo ...

  9. POJ 1149 PIGS 【网络流】

    题意: m n   //有m个猪圈,n个人卖猪. a1...am    //编号为i的猪圈里有ai头猪. b1 c1...cb1 d1   //第i个人有bi把钥匙,分别是ci猪圈的,其它猪圈里的猪都 ...

随机推荐

  1. docker安装mysql中注意事项

    前言 怎么安装docker和拉mysql镜像不是本文的重点,在这里我主要讲我安装mysql容器的三个注意事项:启动容器, 修改密码,远程登录 run容器 docker run -di --name f ...

  2. ZCGL项目解析——概述

    模块清单 微服务模块:routeservice.eurekaservice.configservice 数据服务模块:fdfsservice.hbaseservice 工具服务模块:common 系统 ...

  3. Day8 - A - Points on Line CodeForces - 251A

    Little Petya likes points a lot. Recently his mom has presented him n points lying on the line OX. N ...

  4. 007.Oracle数据库 , 使用%进行模糊查询

    /*Oracle数据库查询日期在两者之间*/ SELECT PKID, OCCUR_DATE, ATA FROM LM_FAULT WHERE ( ( OCCUR_DATE >= to_date ...

  5. unity基础开发----Unity获取PC,Ios系统的mac地址等信息

    在软件开发中可以会用到mac地址作为,设备的唯一标示,我们也可以通过unity获取,经测试pc,ios都可以但是安卓没有获取到. 代码如下: using UnityEngine; using Syst ...

  6. node.js - 定义全局变量

    1,定义全局变量 app.set('name','八戒') 2,获取全局变量 app.get('name')

  7. 【LeetCode 】验证回文串

    [问题]给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写.说明:本题中,我们将空字符串定义为有效的回文串. 示例 : 输入: "A man, a plan, a ...

  8. pip制作离线安装包

    有的电脑无法连接外网(金融行业你懂的),上网下载包又下载不到 anaconda安装一个包(联网情况下)很简单 pip install python-docx 如何把python-docx做成离线包安装 ...

  9. JS给对象添加新字段

    //这是我的对象 var myInfo = { "name":"peng ya ping", "tel":"138888888&q ...

  10. GDI+应用

    GDI+:Graphics Device Interface Plus也就是图形设备接口,提供了各种丰富的图形图像处理功能;在C#.NET中,使用GDI+处理二维(2D)的图形和图像,使用Direct ...