gRPC负载均衡(自定义负载均衡策略)
前言
上篇文章介绍了如何实现gRPC负载均衡,但目前官方只提供了pick_first
和round_robin
两种负载均衡策略,轮询法round_robin
不能满足因服务器配置不同而承担不同负载量,这篇文章将介绍如何实现自定义负载均衡策略--加权随机法
。
加权随机法
可以根据服务器的处理能力而分配不同的权重,从而实现处理能力高的服务器可承担更多的请求,处理能力低的服务器少承担请求。
自定义负载均衡策略
gRPC提供了V2PickerBuilder
和V2Picker
接口让我们实现自己的负载均衡策略。
type V2PickerBuilder interface {
Build(info PickerBuildInfo) balancer.V2Picker
}
V2PickerBuilder
接口:创建V2版本的子连接选择器。
Build
方法:返回一个V2选择器,将用于gRPC选择子连接。
type V2Picker interface {
Pick(info PickInfo) (PickResult, error)
}
V2Picker
接口:用于gRPC选择子连接去发送请求。
Pick
方法:子连接选择
问题来了,我们需要把服务器地址的权重添加进去,但是地址resolver.Address
并没有提供权重的属性。官方给的答复是:把权重存储到地址的元数据metadata
中。
// attributeKey is the type used as the key to store AddrInfo in the Attributes
// field of resolver.Address.
type attributeKey struct{}
// AddrInfo will be stored inside Address metadata in order to use weighted balancer.
type AddrInfo struct {
Weight int
}
// SetAddrInfo returns a copy of addr in which the Attributes field is updated
// with addrInfo.
func SetAddrInfo(addr resolver.Address, addrInfo AddrInfo) resolver.Address {
addr.Attributes = attributes.New()
addr.Attributes = addr.Attributes.WithValues(attributeKey{}, addrInfo)
return addr
}
// GetAddrInfo returns the AddrInfo stored in the Attributes fields of addr.
func GetAddrInfo(addr resolver.Address) AddrInfo {
v := addr.Attributes.Value(attributeKey{})
ai, _ := v.(AddrInfo)
return ai
}
定义AddrInfo
结构体并添加权重Weight
属性,Set
方法把Weight
存储到resolver.Address
中,Get
方法从resolver.Address
获取Weight
。
解决权重存储问题后,接下来我们实现加权随机法负载均衡策略。
首先实现V2PickerBuilder
接口,返回子连接选择器。
func (*rrPickerBuilder) Build(info base.PickerBuildInfo) balancer.V2Picker {
grpclog.Infof("weightPicker: newPicker called with info: %v", info)
if len(info.ReadySCs) == 0 {
return base.NewErrPickerV2(balancer.ErrNoSubConnAvailable)
}
var scs []balancer.SubConn
for subConn, addr := range info.ReadySCs {
node := GetAddrInfo(addr.Address)
if node.Weight <= 0 {
node.Weight = minWeight
} else if node.Weight > 5 {
node.Weight = maxWeight
}
for i := 0; i < node.Weight; i++ {
scs = append(scs, subConn)
}
}
return &rrPicker{
subConns: scs,
}
}
加权随机法
中,我使用空间换时间的方式,把权重转成地址个数(例如addr1
的权重是3
,那么添加3
个子连接到切片中;addr2
权重为1
,则添加1
个子连接;选择子连接时候,按子连接切片长度生成随机数,以随机数作为下标就是选中的子连接),避免重复计算权重。考虑到内存占用,权重定义从1
到5
权重。
接下来实现子连接的选择,获取随机数,选择子连接
type rrPicker struct {
subConns []balancer.SubConn
mu sync.Mutex
}
func (p *rrPicker) Pick(balancer.PickInfo) (balancer.PickResult, error) {
p.mu.Lock()
index := rand.Intn(len(p.subConns))
sc := p.subConns[index]
p.mu.Unlock()
return balancer.PickResult{SubConn: sc}, nil
}
关键代码完成后,我们把加权随机法负载均衡策略命名为weight
,并注册到gRPC的负载均衡策略中。
// Name is the name of weight balancer.
const Name = "weight"
// NewBuilder creates a new weight balancer builder.
func newBuilder() balancer.Builder {
return base.NewBalancerBuilderV2(Name, &rrPickerBuilder{}, base.Config{HealthCheck: false})
}
func init() {
balancer.Register(newBuilder())
}
完整代码weight.go
最后,我们只需要在服务端注册服务时候附带权重,然后客户端在服务发现时把权重Set
到resolver.Address
中,最后客户端把负载论衡策略改成weight
就完成了。
//SetServiceList 设置服务地址
func (s *ServiceDiscovery) SetServiceList(key, val string) {
s.lock.Lock()
defer s.lock.Unlock()
//获取服务地址
addr := resolver.Address{Addr: strings.TrimPrefix(key, s.prefix)}
//获取服务地址权重
nodeWeight, err := strconv.Atoi(val)
if err != nil {
//非数字字符默认权重为1
nodeWeight = 1
}
//把服务地址权重存储到resolver.Address的元数据中
addr = weight.SetAddrInfo(addr, weight.AddrInfo{Weight: nodeWeight})
s.serverList[key] = addr
s.cc.UpdateState(resolver.State{Addresses: s.getServices()})
log.Println("put key :", key, "wieght:", val)
}
客户端使用weight
负载均衡策略
func main() {
r := etcdv3.NewServiceDiscovery(EtcdEndpoints)
resolver.Register(r)
// 连接服务器
conn, err := grpc.Dial(
fmt.Sprintf("%s:///%s", r.Scheme(), SerName),
grpc.WithBalancerName("weight"),
grpc.WithInsecure(),
)
if err != nil {
log.Fatalf("net.Connect err: %v", err)
}
defer conn.Close()
运行效果:
运行服务1
,权重为1
运行服务2
,权重为4
运行客户端
查看前50次请求在服务1
和服务器2
的负载情况。服务1
分配了9
次请求,服务2
分配了41
次请求,接近权重比值。
断开服务2
,所有请求流向服务1
以权重为4
,重启服务2
,请求以加权随机法流向两个服务器
总结
本篇文章以加权随机法为例,介绍了如何实现gRPC自定义负载均衡策略,以满足我们的需求。
源码地址:https://github.com/Bingjian-Zhu/etcd-example
gRPC负载均衡(自定义负载均衡策略)的更多相关文章
- 【Ribbon篇四】自定义负载均衡策略(4)
官方文档特别指出:自定义的负载均衡配置类不能放在 @componentScan 所扫描的当前包下及其子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,也就是说我们达不到特殊化定制 ...
- grpc服务发现与负载均衡
前言 在后台服务开发中,高可用性是构建中核心且重要的一环.服务发现(Service discovery)和负载均衡(Load Balance)一直都是我关注的话题.今天来谈一下我在实际中是如何理解及落 ...
- Spring-Cloud-Ribbon学习笔记(二):自定义负载均衡规则
Ribbon自定义负载均衡策略有两种方式,一是JavaConfig,一是通过配置文件(yml或properties文件). 需求 假设我有包含A和B服务在内的多个微服务,它们均注册在一个Eureka上 ...
- SpringBoot-dubbo自定义负载均衡实现简单灰度
本文介绍如何利用dubbo自定义负载实现简单灰度(用户纬度,部分用户访问一个服务,其余访问剩余服务). 其实在这之前,对dubbo了解的也不是很多,只是简单的使用过,跑了几个demo而已,但是得知接下 ...
- SpringCloud全家桶学习之客户端负载均衡及自定义负载均衡算法----Ribbon(三)
一.Ribbon是什么? Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端 负载均衡的工具(这里区别于nginx的负载均衡).简单来说,Ribbon是Netf ...
- Ribbon源码分析(一)-- RestTemplate 以及自定义负载均衡算法
如果只是想看ribbon的自定义负载均衡配置,请查看: https://www.cnblogs.com/yangxiaohui227/p/13186004.html 注意: 1.RestTemplat ...
- Nginx负载均衡的5种策略(转载)
Nginx的upstream目前支持的5种方式的分配 轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. upstream backserver { s ...
- spring-cloud: eureka之:ribbon负载均衡自定义配置(二)
spring-cloud: eureka之:ribbon负载均衡自定义配置(二) 有默认配置的话基本上就是轮询接口,现在我们改用自定义配置,同时支持:轮询,随机接口读取 准备工作: 1.eureka服 ...
- 分布式系统的负载均衡以及ngnix负载均衡的五种策略
一般而言,有以下几种常见的负载均衡策略: 一.轮询. 特点:给每个请求标记一个序号,然后将请求依次派发到服务器节点中,适用于集群中各个节点提供服务能力等同且无状态的场景. 缺点:该策略将节点视为等同, ...
随机推荐
- cocos2d 导演,场景
导演(Director) Cocos2d-x 使用导演的概念,这个导演和电影制作过程中的导演一样!导演控制电影制作流程,指导团队完成各项任务.在使用 Cocos2d-x 开发游戏的过程中,你可以认为自 ...
- 虚拟化KVM之概述(一)
云计算基本概述 云计算是一种按使用量付费的模式,这种模式提供可用的.便捷的.按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用程序,服务),这些资源能够被快速提供,只需投入很 ...
- 原生JS中获取位置的方案总结
获取鼠标当前位置 clientY.clientX: 鼠标当前位置 相对于 浏览器可视区域顶部.浏览器可视区域左部 的位置: pageY.pageX: 鼠标当前位置 相对于 文档顶部.文档左部的位置: ...
- IIS6服务器的请求流程(图文&源码)
1.IIS 7开发与管理完全参考手册 http://book.51cto.com/art/200908/146040.htm 2.Web服务IIS 6 https://technet.micro ...
- 【ElasticSearch学习】之一图读懂文档索引全过程
ES索引过程详解: 1.客户端发送索引请求. 客户端向ES节点发送索引请求,以RestClient客户端发起请求为例: ES提供了Java High Level REST Client,用户可以通过R ...
- MySQL分页查询的性能优化
MySQL limit分页查询的性能优化 Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了. 传统分页查询:SELECT c1,c2,cn… FROM table LIMIT n ...
- Docker docker-compose 配置lnmp开发环境
1.安装docker yum -y install dockersystemctl start dockersystemctl enable docker 安装docker-compose https ...
- Redis 6.0 新特性-多线程连环13问!
Redis 6.0 来了 在全国一片祥和IT民工欢度五一节假日的时候,Redis 6.0不声不响地于5 月 2 日正式发布了,吓得我赶紧从床上爬起来,学无止境!学无止境! 对于6.0版本,Redis之 ...
- 【Hadoop离线基础总结】Hue与Hive集成
目录 1.更改hue的配置hue.ini 2.启动hive的metastore以及hiveserver2服务 3.启动hue进程,查看Hive是否与Hue集成成功 1.更改hue的配置hue.ini ...
- android实现计时器
新建布局文件activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearL ...