Netty 源码解析(七): NioEventLoop 工作流程
原创申明:本文由公众号【猿灯塔】原创,转载请说明出处标注
NioEventLoop 工作流程
@Override
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
// 判断添加任务的线程是否就是当前 EventLoop 中的线程
boolean inEventLoop = inEventLoop();
// 添加任务到之前介绍的 taskQueue 中,
// 如果 taskQueue 满了(默认大小 16),根据我们之前说的,默认的策略是抛出异常
addTask(task);
if (!inEventLoop) {
// 如果不是 NioEventLoop 内部线程提交的 task,那么判断下线程是否已经启动,没有的话,就启动线程
startThread();
if (isShutdown() && removeTask(task)) {
reject();
}
}
if (!addTaskWakesUp && wakesUpForTask(task)) {
wakeup(inEventLoop);
}
}
原来启动 NioEventLoop 中的线程的方法在这里。另外,上节我们说的 register 操作进到了 taskQueue 中,所以它其实是被归类到了非 IO 操作的范畴。
private void startThread() {
if (state == ST_NOT_STARTED) {
if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
try {
doStartThread();
} catch (Throwable cause) {
STATE_UPDATER.set(this, ST_NOT_STARTED);
PlatformDependent.throwException(cause);
}
}
}
}
private void doStartThread() {
assert thread == null;
// 这里的 executor 大家是不是有点熟悉的感觉,它就是一开始我们实例化 NioEventLoop 的时候传进来的 ThreadPerTaskExecutor 的实例。它是每次来一个任务,创建一个线程的那种 executor。
// 一旦我们调用它的 execute 方法,它就会创建一个新的线程,所以这里终于会创建 Thread 实例
executor.execute(new Runnable() {
@Override
public void run() {
// 看这里,将 “executor” 中创建的这个线程设置为 NioEventLoop 的线程!!!
thread = Thread.currentThread();
if (interrupted) {
thread.interrupt();
}
boolean success = false;
updateLastExecutionTime();
try {
// 执行 SingleThreadEventExecutor 的 run() 方法,它在 NioEventLoop 中实现了
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
// ... 我们直接忽略掉这里的代码
}
}
});
}
@Override
protected void run() {
// 代码嵌套在 for 循环中
for (;;) {
try {
// selectStrategy 终于要派上用场了
// 它有两个值,一个是 CONTINUE 一个是 SELECT
// 针对这块代码,我们分析一下。
// 1. 如果 taskQueue 不为空,也就是 hasTasks() 返回 true,
// 那么执行一次 selectNow(),该方法不会阻塞
// 2. 如果 hasTasks() 返回 false,那么执行 SelectStrategy.SELECT 分支,
// 进行 select(...),这块是带阻塞的
// 这个很好理解,就是按照是否有任务在排队来决定是否可以进行阻塞
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.SELECT:
// 如果 !hasTasks(),那么进到这个 select 分支,这里 select 带阻塞的
select(wakenUp.getAndSet(false));
if (wakenUp.get()) {
selector.wakeup();
}
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
// 默认地,ioRatio 的值是 50
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
// 如果 ioRatio 设置为 100,那么先执行 IO 操作,然后在 finally 块中执行 taskQueue 中的任务
try {
// 1. 执行 IO 操作。因为前面 select 以后,可能有些 channel 是需要处理的。
processSelectedKeys();
} finally {
// 2. 执行非 IO 任务,也就是 taskQueue 中的任务
runAllTasks();
}
} else {
// 如果 ioRatio 不是 100,那么根据 IO 操作耗时,限制非 IO 操作耗时
final long ioStartTime = System.nanoTime();
try {
// 执行 IO 操作
processSelectedKeys();
} finally {
// 根据 IO 操作消耗的时间,计算执行非 IO 操作(runAllTasks)可以用多少时间.
final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
// Always handle shutdown even if the loop processing threw an exception.
try {
if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
return;
}
}
} catch (Throwable t) {
handleLoopException(t);
}
}
}上面这段代码是 NioEventLoop 的核心,这里介绍两点:
- 首先,会根据 hasTasks() 的结果来决定是执行 selectNow() 还是 select(oldWakenUp),这个应该好理解。如果有任务正在等待,那么应该使用无阻塞的 selectNow(),如果没有任务在等待,那么就可以使用带阻塞的 select 操作。
- ioRatio 控制 IO 操作所占的时间比重:
- 如果设置为 100%,那么先执行 IO 操作,然后再执行任务队列中的任务。
- 如果不是 100%,那么先执行 IO 操作,然后执行 taskQueue 中的任务,但是需要控制执行任务的总时间。也就是说,非 IO 操作可以占用的时间,通过 ioRatio 以及这次 IO 操作耗时计算得出。
当然了,实际情况可能是,Channel 实例被 register 到一个已经启动线程的 NioEventLoop 实例中。
365天干货不断微信搜索「猿灯塔」第一时间阅读,回复【资料】【面试】【简历】有我准备的一线大厂面试资料和简历模板
Netty 源码解析(七): NioEventLoop 工作流程的更多相关文章
- 【Netty源码解析】NioEventLoop
上一篇博客[Netty源码学习]EventLoopGroup中我们介绍了EventLoopGroup,实际说来EventLoopGroup是EventLoop的一个集合,EventLoop是一个单线程 ...
- Netty 源码解析(三): Netty 的 Future 和 Promise
今天是猿灯塔“365篇原创计划”第三篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel 当前:Ne ...
- Netty 源码解析(九): connect 过程和 bind 过程分析
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第九篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(八): 回到 Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第八篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(六): Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第六篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一 ):开始 Netty ...
- Netty 源码解析(五): Netty 的线程池分析
今天是猿灯塔“365篇原创计划”第五篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
- Netty 源码解析(四): Netty 的 ChannelPipeline
今天是猿灯塔“365篇原创计划”第四篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
- Netty 源码解析(二):Netty 的 Channel
本文首发于微信公众号[猿灯塔],转载引用请说明出处 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty源码解析(一):开始 当前:Netty 源码解析(二): Netty 的 Channel ...
- Netty源码分析之NioEventLoop(三)—NioEventLoop的执行
前面两篇文章Netty源码分析之NioEventLoop(一)—NioEventLoop的创建与Netty源码分析之NioEventLoop(二)—NioEventLoop的启动中我们对NioEven ...
随机推荐
- Java实现 LeetCode 100 相同的树
100. 相同的树 给定两个二叉树,编写一个函数来检验它们是否相同. 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的. 示例 1: 输入: 1 1 / \ / \ 2 3 2 3 [ ...
- Java实现 LeetCode 69 x的平方根
69. x 的平方根 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: ...
- Java实现旅行商问题
1 问题描述 何为旅行商问题?按照非专业的说法,这个问题要求找出一条n个给定的城市间的最短路径,使我们在回到触发的城市之前,对每个城市都只访问一次.这样该问题就可以表述为求一个图的最短哈密顿回路的问题 ...
- java实现 洛谷 P1014 Cantor表
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...
- java实现第五届蓝桥杯格子放鸡蛋
格子放鸡蛋 X星球的母鸡很聪明.它们把蛋直接下在一个 N * N 的格子中,每个格子只能容纳一枚鸡蛋.它们有个习惯,要求:每行,每列,以及每个斜线上都不能有超过2个鸡蛋.如果要满足这些要求,母鸡最多能 ...
- controller场景设计
场景设计模型-手动场景快增长慢增长指定运行次数组模式 快增长模型:就是压力瞬间启动并且达到最大,通常用于秒杀的场景 loadrunner设置:瞬间启动,瞬间停止 慢增长:压力按照设定的规则慢慢的添加, ...
- 《ElasticSearch入门》一篇管够,持续更新
一.顾名思义: Elastic:灵活的:Search:搜索引擎 二.官方简介: Elasticsearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTf ...
- C#数据结构与算法系列(五):常见单链表笔试
1.求单链表中有效节点个数 public static int GetLength(HeroNode headNode) { int length = ; var cur = headNode.Nex ...
- matlab实现梯度下降法(Gradient Descent)的一个例子
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \ ...
- tcpdump使用和抓包分析
参考资料: http://www.cnblogs.com/ggjucheng/archive/2012/01/14/2322659.html tcpdump可以将网络中传送的数据包的“头”完全截获下来 ...